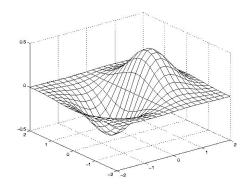
Chapitre 25

Fonctions de deux variables



Les fonctions considérées ici sont définies sur une partie $E \subset \mathbb{R}^2$ définie par des conditions simples.

 $\mathbb{R}^{\,2}$ est muni de la norme euclidienne usuelle (notée $\|.\|$).

Ce chapitre se généralise aisément aux fonctions de 3 variables.

25.1 Parties ouvertes de \mathbb{R}^2

Les opérations sur les ouverts, ainsi que les notions de partie fermée, de voisinage, d'intérieur et d'adhérence d'une partie sont hors programme.

En notant a un élément de \mathbb{R}^2 , on sous-entend que $a=(a_1,a_2)$ avec a_1 et a_2 des réels. On rappelle que \mathbb{R}^2 possède une structure de \mathbb{R} —ev sur lequel on définit une **norme euclidienne** par :

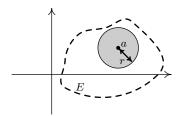
$$\left\|a\right\| = \sqrt{a_1^2 + a_2^2}$$

Une **boule ouverte** de centre $a \in \mathbb{R}^2$, de rayon r > 0

est l'ensemble
$$\mathcal{B}(a,r) = \left\{ x \in \mathbb{R}^2 \mid \left\| x - a \right\| < r \right\}$$

Une **partie ouverte** de \mathbb{R}^2 est un sous-ensemble E de \mathbb{R}^2

qui vérifie
$$\forall \ a \in E \,, \ \exists \ r > 0 \quad \mathcal{B}(a,r) \subset E$$
 (On dit que E est un **voisinage** de chacun de ses points.)



Montrer qu'une boule ouverte est une partie ouverte de \mathbb{R}^2 .

Test 656 Montrer que le complémentaire de la boule fermée
$$\left\{x \in \mathbb{R}^2 \mid \left\|x - a\right\| \leqslant r\right\}$$
 est une partie ouverte de \mathbb{R}^2 .

Test 657 Montrer que, si E et F sont deux parties ouvertes de \mathbb{R}^2 , il en est de même pour $E \cup F$ et $E \cap F$.

25.2 Limites, continuité

25.2.1 Fonctions de deux variables

Une fonction réelle de deux variables réelles est

une application $f: E \to \mathbb{R}$ où $E \subset \mathbb{R}^2$

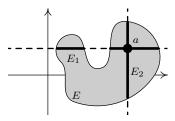
Muni des opérations usuelles $(+, \cdot, \times)$

 $\mathcal{F}(E,\mathbb{R})$ est une algèbre commutative non intègre.

A tout point $a=(a_1,a_2)\in E$, on associe les "traces sur E" des droites d'équations $x=a_1$ et $y=a_2$.

Ce sont les ensembles

$$E_1 = \left\{ x \in \mathbb{R} \mid (x, a_2) \in E \right\}$$
$$E_2 = \left\{ y \in \mathbb{R} \mid (a_1, y) \in E \right\}$$



Les applications partielles ¹ associées à $f \in \mathcal{F}(E, \mathbb{R})$ au point $a = (a_1, a_2) \in E$

sont les applications
$$f(\cdot, a_2)$$

$$\begin{cases} E_1 \to \mathbb{R} \\ x \mapsto f(x, a_2) \end{cases}$$
$$f(a_1, \cdot)$$

$$\begin{cases} E_2 \to \mathbb{R} \\ x \mapsto f(a_1, x) \end{cases}$$

Test 658

Déterminer les ensembles de définitions, puis les applications partielles en (0,0) de $f:(x,y)\mapsto xy$ et $g:(x,y)\mapsto \sin(x)\ln(1+x+y^2)$

25.2.2 Limites

La notion de "limite en a" n'a de sens que si E contient des points arbitrairement proches de a, c'est-à-dire quand $\forall \ \varepsilon > 0 \ , \ \exists \ x \in E - \{a\} \ \left\| x - a \right\| < \varepsilon \ .$ Si E est ouvert, cette condition est vérifiée.

Important:

Désormais, on supposera f définie sur un ouvert E contenant a.

 $f \in \mathcal{F}(E, \mathbb{R})$ admet une <u>limite finie</u> ℓ en a <u>ssi</u>

$$\forall \ \varepsilon > 0 \ , \ \exists \ \eta > 0 \ , \ \forall \ x \in E \ , \ \left\| x - a \right\| < \eta \ \Rightarrow \ |f(x) - \ell | < \varepsilon$$
 On note
$$\overline{\lim_{a} f = \ell} \quad \text{ou} \quad \overline{\lim_{x \to a} f(x) = \ell}$$

 $f \in \mathcal{F}(E, \mathbb{R})$ admet $+\infty$ **pour limite** en a ssi

$$\forall \ A \in \mathbb{R} \,, \ \exists \ \eta > 0 \,, \ \forall \ x \in E \,, \ \left\| x - a \right\| < \eta \ \Rightarrow \ f(x) > A$$
 On note
$$\boxed{\lim_a f = +\infty} \quad \text{ou} \quad \boxed{\lim_{x \to a} f(x) = +\infty}$$

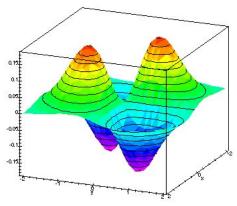
 $f \in \mathcal{F}(E, \mathbb{R})$ admet $-\infty$ **pour limite** en a ssi

1. On dit aussi " fonctions partielles " $\,$

$$\forall \ A \in \mathbb{R} \ , \ \exists \ \eta > 0 \ , \ \forall \ x \in E \ , \ \left\| x - a \right\| < \eta \ \Rightarrow \ f(x) < A$$
 On note
$$\boxed{\lim_a f = -\infty} \quad \text{ou} \quad \boxed{\lim_{x \to a} f(x) = -\infty}$$

Remarques: comme pour les fonctions d'une

- on peut utiliser des inégalités larges $||x-a|| \le \eta$
- Quand elle existe, la limite est unique
- Les résultats sur les limites restent valables (opérations, ordre, ect.)
- Il en est de même pour la "limite séquentielle".



Un outil

$$\boxed{ \max\left(|x|,|y|\right) \leqslant \left\|(x,y)\right\| \leqslant \sqrt{2} \, \max\left(|x|,|y|\right)}$$

Ceci permet de traiter séparément x et y:

$$\begin{split} & \left\| (x,y) \right\| < \eta \ \Rightarrow \ \left(|x| < \eta \ \text{ et } \ |y| < \eta \right) \\ & \left(|x| < \frac{\eta}{\sqrt{2}} \ \text{ et } \ |y| < \frac{\eta}{\sqrt{2}} \right) \ \Rightarrow \ \left\| (x,y) \right\| < \eta \end{split}$$

ce qui revient à utiliser la norme $\|(x,y)\|_{L_{x}} = \max |x|,|y|$)

Test 659

Trouver, si elle existe, la limite en (0,0) de $(x,y) \mapsto x \sin \frac{y}{x}$.

Th. | Limite et applications partielles

Si $f \in \mathcal{F}(E,\mathbb{R})$ admet une limite ℓ en $a=(a_1,a_2)\in \overline{E}$ (limite finie ou infinie) alors les fonctions partielles admettent la même limite en a_1 et a_2 .

$$\lim_{(a_1,a_2)} f = \ell \Rightarrow \begin{cases} \lim_{a_1} f(\cdot,a_2) = \ell \\ \lim_{a_2} f(a_1,\cdot) = \ell \end{cases}$$

la réciproque est fausse.

ullet Ceci permet souvent de déterminer la valeur de la limite de f en a

- La réciproque est fausse : $f(x,y) = \frac{xy}{x^2 + y^2}$ (si cette limite existe)
 - o Les deux fonctions partielles en (0,0) ont la même limite $\ell=0$
 - \circ Pourtant, f n'a pas de limite en (0,0).

En effet : $f(x,x) = \frac{1}{2}$ ne tend pas vers 0 quand $x \to 0$.

- 1. Rappeler les formules trigonométriques de sommes en produits.
- 2. Soit $f:(x,y)\mapsto \frac{\sin x+\sin y}{x+y}$. Déterminer son ensemble de définition.
- 3. Déterminer la limite en 0 de chacune des applications partielles de f.
- 4. Montrer que cette limite commune est celle de f en (0,0).

Test 660

25.2.3 Continuité

f est <u>continue en $a \in E$ </u> <u>ssi</u> $\lim_{a} f = f(a)$.

f est continue sur E ssi f est continue en tout point $a \in E$

On note
$$f \in \mathcal{C}(E, \mathbb{R})$$
 ou $f \in \mathcal{C}^0(E, \mathbb{R})$

Les résultats sur les limites finies montrent que :

- les résultats sur la continuité restent valables (somme, produit, quotient, etc.)
- muni des opérations usuelles :

$$\circ \left\{ f \in \mathcal{F}(E,\mathbb{R}) \mid f \text{ continue en } a \right\} \quad \text{a une structure d'algèbre commutative.}$$

- o $\mathcal{C}(E,\mathbb{R})$ a une structure d'algèbre commutative (non intègre).
- Composition :

$$\circ E \subset \mathbb{R}^2 \xrightarrow{f} I \xrightarrow{\varphi} \mathbb{R} \quad \text{et} \quad a \in E$$

$$\begin{cases}
f \text{ continue en } a \\
\varphi \text{ continue en } f(a)
\end{cases} \Rightarrow \varphi \circ f \text{ continue en } a$$

$$\circ \ \varphi_1: I \to E_1 \ , \ \varphi_2: I \to E_2 \ , \ f: E_1 \times E_2 \to \mathbb{R} \quad \text{ et } \quad t_0 \in I$$

$$\left. \begin{array}{c} \varphi_1 \text{ et } \varphi_2 \text{ continues en } t_0 \\ f \text{ continue en } \left(\varphi_1(t_0), \varphi_2(t_0) \right) \end{array} \right\} \Rightarrow t \mapsto f \left(\varphi_1(t), \varphi_2(t) \right) \text{ continue en } t_0$$

• Si f est continue en $a = (a_1, a_2)$ alors les applications partielles en a sont continues en a_1 et a_2 (sous réserve qu'elles soient localement définies a).

Attention : la réciproque est fausse.

Th. | Continuité des projections canoniques

Les applications $(x,y)\mapsto x$ et $(x,y)\mapsto y$ sont continues sur \mathbb{R}^2 .

Ce sont les **projections canoniques**

Intérêt

Ceci permet d'établir rapidement la continuité de la plupart des fonctions.

Test 661 Justifier que les fonctions suivantes sont continues sur leur ensemble de définition : $f:(x,y)\mapsto x+y$ $g:(x,y)\mapsto x\sin(y)+\ln(x+y^2)$

Test 662 Ensemble de continuité de $f:(x,y)\mapsto x\sin\frac{y}{x}$ si $x\neq 0$ et f(0,y)=0.

2. Exemple:

en (0,0), la fonction $f:(x,y)\mapsto \sqrt{(y-2x)(x-2y)}$ est continue, mais les fonctions partielles en ce point ne sont définies qu'en $\{0\}$.

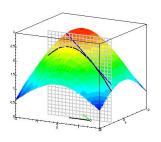
25.3 Dérivées partielles

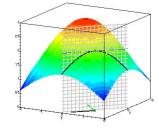
25.3.1 Dérivées selon un vecteur

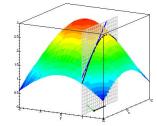
 $f \in \mathcal{F}(E,\mathbb{R})$ où E est un ouvert de \mathbb{R}^2 . u est un vecteur de \mathbb{R}^2

La <u>dérivée en a suivant le vecteur u</u> notée $D_u f(a)$

est, si elle existe, la dérivée en 0 de $\varphi_u: t \mapsto f(a+tu)$.







Remarques

- Si u = 0, φ_0 est constante et définie sur \mathbb{R} .
- Si $u \neq 0$, E étant un ouvert, il existe une boule ouverte $\mathcal{B}(a,r)$ incluse dans E. La fonction φ_u est au moins définie sur $\left|-\frac{r}{||u||},\frac{r}{||u||}\right|$
- Si elle existe : $D_u f(a) = \varphi'_u(0) = \lim_{t \to 0} \frac{f(a+tu) f(a)}{t}$

Test 663

Soit la demi-sphère $(x,y)\mapsto \sqrt{1-x^2-y^2}$ et $a=(\frac{1}{2},0)$. Calculer les dérivées en a suivant les vecteurs (1,0), puis (0,1) puis (1,1). Pouvez-vous confirmer géométriquement ces résultats.

Propriétés : si f et g admettent des dérivées en a suivant u

- f + g aussi et $D_u(f+g)(a) = D_u f(a) + D_u g(a)$
- λf aussi et $D_u(\lambda f)(a) = \lambda D_u f(a)$
- fg aussi et $D_u(fg)(a) = D_uf(a)g(a) + f(a)D_ug(a)$
- si f ne s'annule pas sur E alors $\frac{1}{f}$ aussi et $D_u \frac{1}{f}(a) = -\frac{D_u f(a)}{f^2(a)}$
- si $\varphi: f(E) \to \mathbb{R}$ est dérivable en f(a), alors $\varphi \circ f$ admet des dérivées selon u en a, et $D_u(\varphi \circ f)(a) = \varphi'\left(f(a)\right) D_u f(a)$

25.3.2 Dérivées partielles premières

Les <u>dérivées partielles</u> de $f: \begin{cases} E & \to & \mathbb{R} \\ & & \text{en } a = (a_1, a_2) \text{ sont} \\ (x_1, x_2) & \mapsto & f(x_1, x_2) \end{cases}$

$$\frac{\partial f}{\partial x_1}(a)$$
 ou $D_1 f(a)$ ou $f'_{x_1}(a)$ dérivée en a selon $u = (1,0)$

c'est la dérivée en a_1 de la fonction partielle $f(\cdot, a_2)$

$$\frac{\partial f}{\partial x_2}(a)$$
 ou $D_2 f(a)$ ou $f'_{x_2}(a)$ dérivée en a selon $u=(0,1)$

c'est la dérivée en a_2 de la fonction partielle $f(a_1,\cdot)$

- \bullet le "1" de D_1f désigne la dérivée selon la <u>première</u> place (ou variable)
- La notation $\frac{\partial f}{\partial x}$ s'adapte suivant les notations utilisées.
- Comme ce sont des dérivées selon un vecteur u, les propriétés usuelles s'appliquent $\frac{\partial}{\partial x_1}(f+g) = \frac{\partial}{\partial x_1}f + \frac{\partial}{\partial x_1}g$, etc.
- Ces dérivées indiquent les pentes des tangentes des sections de la surface

Test 664

Exprimer (quand elles existent) les dérivées partielles de fg et de $\frac{f}{g}$.

Test 665

f est définie par $f(x,y) = \frac{xy}{x^2 + y^2}$ si $(x,y) \neq (0,0,1)$ et f(0,0) = 0. Montrer que, en tout point de \mathbb{R}^2 , f admet des dérivées partielles qu'on calculera.

Fonctions de classe \mathcal{C}^1 25.3.3

Important:

 $f \in \mathcal{F}(E, \mathbb{R})$ est de <u>de classe</u> \mathcal{C}^1 sur l'ouvert $E \subset \mathbb{R}^2$ <u>ssi</u> fadmet des dérivées partielles en tout point de $a \in E$ et les fonctions dérivées partielles $D_1 f$ et $D_2 f$ sont continues sur E

Test 666

Montrer que $(x,y) \mapsto x+y$ et $(x,y) \mapsto xy$ sont de classe \mathcal{C}^1 sur \mathbb{R}^2 .

Propriétés: d'après les résultats précédents (continuité et dérivées selon u)

- $C^1(E, \mathbb{R})$ a une structure d'algèbre commutative (non intègre)
- Si $f \in \mathcal{C}^1(E,\mathbb{R})$ ne s'annule pas sur E, alors $\frac{1}{f} \in \mathcal{C}^1(E,\mathbb{R})$
- $\left. \begin{array}{c}
 f \in \mathcal{C}^1(E,\mathbb{R}) \\
 \varphi \in \mathcal{C}^1\left(f(E),\mathbb{R}\right)
 \end{array} \right\} \Rightarrow \varphi \circ f \in \mathcal{C}^1(E,\mathbb{R}).$

• Les projections canoniques $(x,y) \mapsto x \operatorname{et}(x,y) \mapsto y$ sont de classe \mathcal{C}^1 sur \mathbb{R}^2 . (tout ceci permet de montrer rapidement qu'une fonction est de classe C^1)

Th. Développement limité d'ordre 1 (3)

Si
$$f$$
 est de classe C^1 sur E ouvert de \mathbb{R}^2 , alors, pour tous points $a = (a_1, a_2)$ et $x = (x_1, x_2)$ de E

$$f(x) = f(a) + (x_1 - a_1) \frac{\partial f}{\partial x_1}(a) + (x_2 - a_2) \frac{\partial f}{\partial x_2}(a) + \left\| x - a \right\| \varepsilon(x)$$
avec $\lim_{x \to a} \varepsilon(x) = 0$

Th. \triangleright Corollaire

Une fonction de classe \mathcal{C}^1 sur E est donc continue sur E.

3. La démonstration est hors programme.

Th. \triangleright Conséquences sur les dérivées selon u

Si f est de classe \mathcal{C}^1 sur E ouvert de \mathbb{R}^2 , alors, pour tout point $a \in E$ et pour tout vecteur $u = (u_1, u_2) \in \mathbb{R}^2$ f admet une dérivée en a selon u et

$$D_u f(a) = u_1 \frac{\partial f}{\partial x_1}(a) + u_2 \frac{\partial f}{\partial x_2}(a)$$

L'application $u\mapsto D_uf(a)$ est une forme linéaire sur \mathbb{R}^2 .

$$D_{u+\lambda v}f(a) = D_uf(a) + \lambda D_vf(a)$$

Th. \triangleright Plan tangent à à la surface Γ d'équation z = f(x, y)

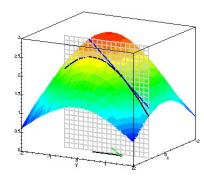
- ight.
 ight.
- \triangleright Soit f de classe \mathcal{C}^1 sur E ouvert de \mathbb{R}^2 , au point $m_0(x_0, y_0)$
- ightharpoonup Soit Γ la surface représentative de f dans $\mathcal R$ autrement dit

$$\Gamma = \{ M(x, y, z) \text{ tel que } z = f(x, y) \text{ et } (x, y) \in E \}$$

$$ightharpoonup$$
 Soit $M_0\left(\underbrace{x_0,y_0}_{=m_0},z_0\right) \in \Gamma$ avec $z_0=f(x_0,y_0)$

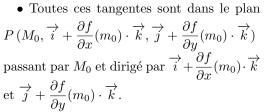
Alors Γ admet en ce point des tangentes dans toutes les directions et toutes ces tangentes forment le plan $P\left(M_0, \overrightarrow{i} + \frac{\partial f}{\partial x}(m_0) \cdot \overrightarrow{k}, \overrightarrow{j} + \frac{\partial f}{\partial y}(m_0) \cdot \overrightarrow{k}\right)$. C'est le plan tangent à Γ en M_0 , d'équation :

$$(x - x_0)\frac{\partial f}{\partial x}(m_0) + (y - y_0)\frac{\partial f}{\partial y}f(m_0) - (z - z_0) = 0$$

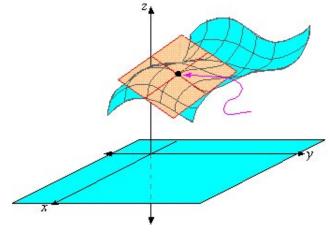


• La section de Γ par le plan $P(M_0, \overrightarrow{k}, \underbrace{a\overrightarrow{i} + b\overrightarrow{j}})$ passant par M_0 et orienté par les vecteurs \overrightarrow{k} et $a\overrightarrow{i} + b\overrightarrow{j}$ est une courbe qui ad-

par les vecteurs \overrightarrow{k} et $a\overrightarrow{i}+b\overrightarrow{j}$ est une courbe qui admet une tangente en A dirigée par $\overrightarrow{u}+D_uf(m_0)$ \overrightarrow{k} Cette droite est **une tangente** à Γ en M_0



Ce plan est le plan tangent à Γ en M_0



Test 667

Former l'équation du plan tangent en (a,b) à la surface d'équation $z=1-\sqrt{x^2+y^2}$. Montrer que tous ces plans passent par un point fixe. Quelle est la nature de cette surface?

25.3.4 Notation différentielle

Important:

Si f est de classe \mathcal{C}^1 sur E, le $\mathrm{DL}_1(a)$ peut s'écrire $f(a+h) = f(a) + \underbrace{h_1 \frac{\partial f}{\partial x_1}(a) + h_2 \frac{\partial f}{\partial x_2}(a)}_{= df_a(h)} + o\left(\left\|h\right\|\right)$ La <u>différentielle de f en a</u> notée df(a) ou df_a est l'application $\mathbb{R}^2 \to \mathbb{R}$, $h = (h_1, h_2) \mapsto h_1 \frac{\partial f}{\partial x_1}(a) + h_2 \frac{\partial f}{\partial x_2}(a)$

Remarques:

Si
$$f$$
 est de classe C^1 sur E :
$$df_a(h) = D_h f(a) = h_1 \frac{\partial f}{\partial x_1}(a) + h_2 \frac{\partial f}{\partial x_2}(a)$$

• En notant dx_1 et dx_2 les projections canoniques :

$$\forall a \in E, \ \forall h \in \mathbb{R}^2, \ df_a(h) = \frac{\partial f}{\partial x_1}(a)dx(h) + \frac{\partial f}{\partial x_2}(a)dy(h)$$
$$\forall a \in E, \ df_a = \frac{\partial f}{\partial x_1}(a)dx + \frac{\partial f}{\partial x_2}(a)dy$$

La différentielle de f est l'application :

$$df: a \mapsto df_a, E \to \mathcal{L}(\mathbb{R}^2, \mathbb{R})$$

et les notations
$$df = \frac{\partial f}{\partial x_1} dx + \frac{\partial f}{\partial x_2} dy et df(a) = \frac{\partial f}{\partial x_1}(a) dx + \frac{\partial f}{\partial x_2}(a) dy$$

25.4Notion de gradient

Si f est de classe \mathcal{C}^1 sur $E,\ df_a$ est une forme linéaire sur \mathbb{R}^2 autrement dit appartient à

Il existe donc un unique vecteur $u_a \in \mathbb{R}^2$ tel que $\forall h \in \mathbb{R}^2$, $df_a(h) = \begin{pmatrix} u_a & h \end{pmatrix}$

le **gradient** de f est l'application, $\nabla f : \begin{cases} E & \to \mathbb{R}^2 \\ a & \hookrightarrow \end{cases}$

•
$$\forall a \in E, \forall h \in \mathbb{R}^2, \left(| \nabla f(a) | h \right) = df_a(h) = \frac{\partial f}{\partial x_1}(a) h_1 + \frac{\partial f}{\partial x_2}(a) h_2$$
• dans la base canonique \mathcal{B}

$$\nabla f(a) = \left(\frac{\partial f}{\partial x_1}(a), \frac{\partial f}{\partial x_2}(a)\right)_{/\mathcal{B}}$$
 a notation officielle. Certains auteurs utilisent les notations
$$\nabla_a f \text{ ou } \overrightarrow{\nabla}_a f \text{ ou } \overrightarrow{\nabla}$$

Important:

$$df_a(u) = \left(\begin{array}{c|c} \nabla f(a) & u \end{array} \right) = D_u f(a)$$

Propriétés: $f, g \in C^1(E, \mathbb{R}), \lambda \in \mathbb{R}$

- $\nabla(f + \lambda g) = \nabla(f) + \lambda \nabla(g)$ (linéarité)
- $\nabla(f g) = \nabla(f) g + f \nabla(g)$

Interprétation géométrique :

Soit $f \in \mathcal{C}^1(E,\mathbb{R})$ et Γ , surface d'équation z = f(x,y) dans $\mathcal{R} = (O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$.

En tout point $A(x_a, y_a, z_a) \in \Gamma$

le vecteur $\nabla f(x_a,y_a)$ indique la ligne de plus grande pente de Γ

Application au DL d'ordre 1:

Si f est de classe C^1 sur E ouvert de \mathbb{R}^2 , alors, pour tous points $a = (a_1, a_2)$ et $x = (x_1, x_2)$ de E

$$f(x) = f(a) + \left(\begin{array}{c|c} \nabla f(a) & x - a \end{array} \right) + \left\| x - a \right\| \varepsilon(x)$$

avec $\lim_{x \to a} \varepsilon(x) = 0$

25.5 Dérivée d'une composée

Th. \triangleright Dérivation de $I \xrightarrow{\varphi} F \xrightarrow{f} \mathbb{R}$

Si $\varphi: t \mapsto \left(\varphi_1(t), \varphi_2(t)\right)$ est de classe \mathcal{C}^1 sur l'intervalle I et $f: x = (x_1, x_2) \mapsto f(x_1, x_2)$ est de classe \mathcal{C}^1 sur F ouvert de \mathbb{R}^2

 $f: x = (x_1, x_2) \mapsto f(x_1, x_2)$ est de classe \mathcal{C}^1 sur F ouvert de \mathbb{R}^2 alors $\psi = f \circ \varphi : t \mapsto f\left(\varphi_1(t), \varphi_2(t)\right)$ est de classe \mathcal{C}^1 sur I et

$$\forall t \in I, \quad \psi'(t) = \frac{\partial f}{\partial x_1} \left(\varphi(t) \right) \varphi_1'(t) + \frac{\partial f}{\partial x_2} \left(\varphi(t) \right) \varphi_2'(t) = \left(\nabla f(\varphi(t)) \mid \varphi'(t) \right)$$

Notes:

• Cette formule est facile à retenir. Il suffit d'appliquer à chaque variable intermédiaire la classique dérivée d'une composée :

$$\frac{d}{dt} f\left(x(t)\right) = f'\left(x(t)\right) x'(t)$$

• Dans la pratique, on allège parfois les notations en écrivant

$$\psi(t) = f\big(x_1(t), x_2(t)\big)$$
 qu'on dérive en
$$\psi' = \frac{\partial f}{\partial x_1}(x)\,x_1' + \frac{\partial f}{\partial x_2}(x)\,x_2'$$

• mais il ne faut pas oublier que $x_1'\,,\;x_2'\quad \ \ \, \underline{\text{et}\;x}\quad \text{sont des fonctions de}\;t.$

Exemple On retrouve la dérivée du produit $p:t\mapsto u(t)\,v(t)$ comme composée $t \mapsto \left(u(t), v(t)\right) \mapsto f\left(u(t), v(t)\right) \text{ où } f(u, v) = u v$ $p'(t) = \underbrace{\frac{\partial f}{\partial u}(u, v)}_{} u'(t) + \underbrace{\frac{\partial f}{\partial v}(u, v)}_{} v'(t) = u = (v u' + u v')(t)$

(noter l'abus de notation : on indique u et v au lieu de u(t) et v(t).)

Test 668

Dériver la composée $\, \varphi : t \, \mapsto \, f(e^t, e^{-t}) \,$ où $\, f(u,v) = \frac{u}{v} \,$. Vérifier en dérivant directement φ .

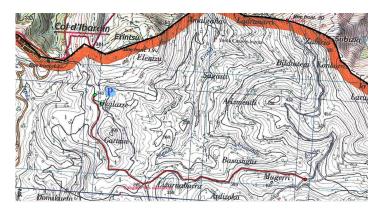
La ligne de niveau est la courbe d'une fonction φ définie sur un intervalle I à valeurs dans R^2 telle que $\varphi(t) = (x(t), y(t))$ vérifie

$$\forall t \in I, f(x(t), y(t)) = C^{\text{te}}$$

Th. | Gradient et lignes de niveau

Soit $f \in \mathcal{C}^1(E, \mathbb{R})$ et Γ , surface d'équation z = f(x, y) dans $\mathcal{R} = (O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$. En tout point $A(x_a, y_a, z_a) \in \Gamma$

le vecteur $\nabla f(x_a, y_a)$ est orthogonal à la ligne de niveau



<u>dérivation de</u> $E \xrightarrow{g} F \xrightarrow{f} \mathbb{R}$

Si $g:(x_1,x_2)\mapsto \left(g_1(x_1,x_2),g_2(x_1,x_2)\right)$ et $f:(u_1,u_2)\mapsto f(u_1,u_2)$ sont de classe \mathcal{C}^1 sur les ouvert E et F de \mathbb{R}^2 , alors

Here
$$E$$
 et F de \mathbb{R} , alors
$$h = f \circ g : \underbrace{(x_1, x_2)}_{x} \mapsto f\left(\underbrace{g_1(x_1, x_2)}_{u_1}, \underbrace{g_2(x_1, x_2)}_{u_2}\right) \text{ est de classe } \mathcal{C}^1 \text{ sur } E \text{ et}$$

$$\forall \ x \in E \quad \begin{cases} \frac{\partial h}{\partial x_1}(x) = \frac{\partial f}{\partial u_1} \left(g(x)\right) \frac{\partial g_1}{\partial x_1}(x) + \frac{\partial f}{\partial u_2} \left(g(x)\right) \frac{\partial g_2}{\partial x_1}(x) \\ \frac{\partial h}{\partial x_2}(x) = \frac{\partial f}{\partial u_1} \left(g(x)\right) \frac{\partial g_1}{\partial x_2}(x) + \frac{\partial f}{\partial u_2} \left(g(x)\right) \frac{\partial g_2}{\partial x_2}(x) \end{cases}$$

Note

Là encore, on simplifie les notations en

$$(x,y) \mapsto h(x,y) = f\left(u(x,y), v(x,y)\right)$$
 se dérive en
$$\frac{\partial h}{\partial x} = \frac{\partial f}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial f}{\partial v} \frac{\partial v}{\partial x} \quad \text{et} \quad \frac{\partial h}{\partial y} = \frac{\partial f}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial f}{\partial v} \frac{\partial v}{\partial y}$$
 (avec les mêmes dangers : les compositions n'apparaissent pas.)

Retour à la notation différentielle : indépendance des notations...

Si
$$z = f(x,y) = f\left(x(u,v), y(u,v)\right) = g(u,v)$$

$$(f,g,u,v \text{ de classe } \mathcal{C}^1)$$
 alors
$$dz = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy = \frac{\partial g}{\partial u} du + \frac{\partial g}{\partial v} dv$$

25.6 Extremum d'une fonction de deux variables

La fonction $f:E \to \mathbb{R}$ définie sur $E \subset \mathbb{R}^2$ présente :

- un <u>maximum absolu</u> en $a \in E$ <u>ssi</u> $\forall x, x \in E \Rightarrow f(x) \leqslant f(a)$
- un minimum absolu en $a \in E$ ssi $\forall x, x \in E \Rightarrow f(x) \geqslant f(a)$
- un <u>extremum absolu</u> en $a \in E$ <u>ssi</u>

f présente un maximum ou un minimum absolu en a.

 • f présente un maximum <u>local</u> en a (resp. minimum, extremum) <u>ssi</u> $\exists r > 0, f|_{E \cap \mathcal{B}(a,r)}$ présente un maximum absolu en a (resp. minimum, extremum).

Th. | ▶ Point critique

Soit f de classe C^1 sur E <u>ouvert</u> de \mathbb{R}^2 .

f présente un extremum local en $a \in E \implies \frac{\partial f}{\partial x}(a) = \frac{\partial f}{\partial y}(a) = 0$

Attention

- la réciproque est fausse (voir le contre-exemple).
- \bullet Ceci n'est valable que pour un ouvert de E

(ou en un point situé dans $\stackrel{\circ}{E}$, intérieur de E)

- $a \in E$ vérifiant $\frac{\partial f}{\partial x}(a) = \frac{\partial f}{\partial y}(a) = 0$ est appelé **point critique**
- Les extremums sont donc soit des points critiques, soit "sur les bords" de

Contre-exemple

Le plus classique : $f:(x,y)\mapsto x^2-y^2$ est de classe \mathcal{C}^1 sur \mathbb{R}^2 .

O(0,0) est un point critique.

Pourtant : $\forall \varepsilon > 0$, $f(\varepsilon, 0) > f(0, 0)$ et $f(0, \varepsilon) < f(0, 0)$ montre que f ne présente pas d'extremum local en O.

Test 669

Quels sont les extremums locaux de $f:(x,y)\mapsto \frac{x+y}{\frac{1}{2}+x^2+y^2}$?

Se méfier des intuitions...

Soit f de classe \mathcal{C}^1 sur E ouvert de \mathbb{R}^2 contenant l'origine O(0,0).

ullet Montrer que, si f présente un minimum absolu en O sur E, alors, $\forall u \neq (0,0), \varphi_u : t \mapsto f(tu)$ présente un minimum local en 0.

Test 670

Page 395

- f est définie par $f(x,y) = y(y-x^2)$.
 - o Montrer que : $\forall u \neq 0, \varphi_u$ présentent un minimum local en 0
 - \circ f présente-t-elle un minimum local en O?
 - o qu'en déduisez-vous?

25.7 **Exercices**

Ensemble de définition et lignes de niveaux

Exercice 1

Représenter les ensembles de définitions des fonctions suivantes :

1.
$$f(x,y) = \ln(2x + y - 2)$$

2.
$$f(x,y) = \sqrt{1-xy}$$

3.
$$f(x,y) = \frac{\ln(y-x)}{x}$$

3.
$$f(x,y) = \frac{\ln(y-x)}{x}$$

4. $f(x,y) = \frac{1}{\sqrt{x^2 + y^2 - 1}} + \sqrt{4 - x^2 - y^2}$

Exercice 2

Représenter les lignes de niveau k pour les fonctions suivantes :

1.
$$f(x,y) = y^2$$
, avec $k = -1$ et $k = 1$

2.
$$f(x,y) = \frac{x^4 + y^4}{8 - x^2 y^2}$$
 avec $k = 2$

3.
$$f(x,y) = \sin(xy)$$
 avec $k = \frac{1}{2}$

Calcul de limites

Exercice 3

1. Montrer que si x et y sont des réels, on a : $2|xy| \le x^2 + y^2$.

2. Soit
$$f$$
 l'application de $A = \mathbb{R}^2 \setminus \{(0,0)\}$ dans \mathbb{R} définie par $f(x,y) = \frac{3x^2 + xy}{\sqrt{x^2 + y^2}}$. Montrer que, pour tout (x,y) de A , on a :

$$|f(x,y)| \le 4 \left\| (x,y) \right\|_2$$

3. En déduire que f admet une limite en (0,0).

Exercice 4

 $\overline{\text{Les fonctions}}$ suivantes ont-elles une limite (finie) en (0,0)?

1.
$$f(x,y) = (x+y)\sin\left(\frac{1}{x^2+y^2}\right)$$

2.
$$f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$$

3.
$$f(x,y) = \frac{|x+y|}{x^2 + y^2}$$

Continuité

Démontrer que la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$f(x,y) = \begin{cases} 2x^2 + y^2 - 1 & \text{si } x^2 + y^2 > 1 \\ x^2 & \text{sinon} \end{cases}$$

est continue sur \mathbb{R}^2 .

Exercice 6

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 .

On définit $F: \mathbb{R}^2 \to \mathbb{R}$ par

$$F(x,y) = \begin{cases} \frac{f(x) - f(y)}{x - y} & \text{si } x \neq y \\ f'(x) & \text{sinon} \end{cases}$$

Démontrer que F est continue sur \mathbb{R}^2 .

Dérivées partielles

Exercice 7

1. Soit g une fonction réelle de classe C^1 sur un ouvert V de \mathbb{R}^2 contenant au moins le cercle unité et à valeurs dans \mathbb{R} .

Montrer que

$$\phi: t \mapsto g(\cos(t), \sin(t))$$

est dérivable sur $\mathbb R$ et calculer sa dérivée.

2. On pose $f:(x,y)\mapsto \cos(x+y)$ et $g:(x,y)\mapsto (x+y,xy)$ Montrer que $h=f\circ g$ est de classe C^1 sur \mathbb{R}^2 et calculer ses dérivées partielles.

Exercice 8

Soit

$$f: (x,y) \mapsto arctan(x) + arctan(y) - arctan\left(\frac{x+y}{1-xy}\right)$$

- 1. Montrer que le domaine de définition D de f est la réunion de trois ouverts de \mathbb{R}^2 .
- 2. Montrer que f est C^1 sur D, et calculer ses dérivées premières.

Exercice 9

On considère les ensembles D et \tilde{D} de \mathbb{R}^2 définis par :

$$D = \{(x, y) \in \mathbb{R}^2, 2x^2 + y^2 - 2y < 1\}$$

$$\tilde{D} = \{(x, y) \in \mathbb{R}^2, 2x^2 + y^2 - 2y < 1\}$$

On considère la fonction

$$f: \mathbb{R}^2 \to \mathbb{R}, \ (x,y) \mapsto x^2 e^y$$

- 1. Représenter l'ensemble D.
- 2. Déterminer les points critiques de f sur \tilde{D} .
- 3. Déterminer les minima de f sur \tilde{D} .

Exercice 10

Soit la fonction f définie sur \mathbb{R}^2 par :

$$f:(x,y)\mapsto \begin{cases} \frac{x^3}{x^2+y^2} & si \qquad (x,y)\neq (0,0)\\ 0 & sinon \end{cases}$$

1. Montrer que la fonction f est continue sur \mathbb{R}^2 .

2. La fonction f est-elle de classe C^1 sur \mathbb{R}^2 ?

Exercice 11

Soit la fonction f définie sur \mathbb{R}^2 par :

$$f:(x,y)\mapsto \left\{ \begin{array}{ll} \frac{xy(x^2-y^2)}{x^2+y^2} & si \qquad (x,y)\neq (0,0) \\ 0 & sinon \end{array} \right.$$

- 1. Montrer que la fonction f est C^1 sur $\mathbb{R}^2 \{(0,0)\}.$
- 2. Etudier f en (0,0).

Exercice 12

Soit $\alpha \in \mathbb{R}$.

1. Déterminer toutes les fonctions f de classe C^1 sur \mathbb{R}^2 telles que

$$\frac{\partial^2 f}{\partial x^2}(x,y) - 4\frac{\partial^2 f}{\partial y^2}(x,y) = \alpha$$

On utilisera le changement de variables

$$(u = 2x + y, v = 2x - y)$$

2. A quelles conditions sur les réels λ et μ , la fonction f définie sur \mathbb{R}^2 par

$$f(x,y) = \lambda \left(\cos(2x) + \sin(2x)\right) \left(\sin(y) + \cos(y)\right)$$

$$+\mu \left(\frac{x^2}{4} - \frac{y^2}{16}\right)$$

est-elle solution de l'équation précédente?

Exercice 13

Soit (S) la surface d'équation cartésienne

$$z = \frac{2xy}{x^2 + y^2}$$

Déterminer l'intersection de (S) avec son plan tangent au point $A(1,\sqrt{3},\frac{\sqrt{3}}{2})$.

25.8 Exercices Complémentaires

Exercice 1

Soit

$$f: \left\{ \begin{array}{ccc} \mathbb{R}^2 \setminus \{(0,0)\} & \to & \mathbb{R} \\ (x,y) & \mapsto & \frac{\sin(xy)}{|x|+|y|} \end{array} \right.$$

Montrer que

$$\lim_{(x,y)\to(0,0)} f(x,y) = 0$$

Exercice 2

 $\overline{\text{On considère }} f: \mathbb{R}^2 \to \mathbb{R} \text{ définie par :}$

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2} & si \quad (x,y) \neq (0,0) \\ 0 & si \quad x = y = 0 \end{cases}$$

Montrer que f est continue sur \mathbb{R}^2 .

Exercice 3

On considère $f: \mathbb{R}^2 \to \mathbb{R}$ définie par :

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2} & si \quad (x,y) \neq (0,0) \\ 0 & si \quad x = y = 0 \end{cases}$$

f est-elle de classe \mathcal{C}^1 sur \mathbb{R}^2 ?

Exercice 4

 $\overline{\text{Montrer que}}$ l'application $f: \mathbb{R}^2 \to \mathbb{R}$ définie par :

$$f(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2} & si \quad (x,y) \neq (0,0) \\ 0 & si \quad x = y = 0 \end{cases}$$

est continue sur \mathbb{R}^2 , admet en (0,0) des dérivées selon tout vecteur mais n'est pas \mathcal{C}^1 .

Exercice 5

Déterminer les extrema locaux de la fonction f définie sur \mathbb{R}^2 par :

$$\forall (x,y) \in \mathbb{R}^2, \ f(x,y) = x^4 + y^4 - 4(x-y)^2$$

Montrer ensuite que f possède un minimum global sur \mathbb{R}^2 . En quels points?

