Chapitre 11

$\mathbb N$ et Arithmétique dans $\mathbb Z$

11.1 Arithmétique dans \mathbb{Z}

11.1.1 Division Euclidienne

Th. ▷ **Division euclidienne**

Soient a un entier relatif et b un entier naturel non nul.

$$\exists ! (q,r) \in \mathbb{Z}^2 \mid a = bq + r \text{ et } 0 \le r < b$$

On dit qu'on a effectué la <u>division euclidienne</u> de a par b. q est le quotient et r le reste de la division euclidienne.

11.1.2 Division et multiples

Soit a et b dans \mathbb{Z} .

Dire que a <u>divise</u> b (ou b est multiple de a) <u>ssi</u> $\exists n \in \mathbb{Z}$ tel que b = na.

On note a|b.

Important:

$$a|b \Leftrightarrow b \in a\mathbb{Z} \Leftrightarrow b\mathbb{Z} \subset a\mathbb{Z}$$

 \bullet La relation "divise" est une relation d'ordre partiel sur $\mathbb N$ mais n'est pas un ordre sur $\mathbb Z$

11.1.3 Congruence

Dire que \mathcal{R} est une **relation d'équivalence** sur un ensemble E signifie que \mathcal{R} est

- réflexive : $\forall x \in E, \overline{xRx}$.
- symétrique : $\forall (x,y) \in E^2, \ x\mathcal{R}y \Rightarrow y\mathcal{R}x.$
- transitive : $\forall (x, y, z) \in E^3$, $(x\mathcal{R}y \text{ et } y\mathcal{R}z) \Rightarrow x\mathcal{R}z$.

Th. > Relation d'équivalence

Soit $n \in \mathbb{N}$.

La relation définie sur $\mathbb Z$ par $x\equiv y[n]\Leftrightarrow \exists k\in\mathbb Z\ x-y=kn$ est une relation d'équivalence.

Test 286

Soit $n \in \mathbb{N}$. Montrer que $x \equiv y[n] \Leftrightarrow x$ et y ont le même reste dans la division euclidienne par n.

Soit \mathcal{R} une relation d'équivalence sur une ensemble E et soit $x \in E$,

On appelle <u>classe d'équivalence</u> de x pour \mathcal{R} l'ensemble $\{y \in E \mid x\mathcal{R}y\}$; cet ensemble est noté \overline{x} ou cl(x).

Un sous-ensemble X de E est une classe d'équivalence s'il existe $x \in E$ tel que $X = \overline{x}$, un tel x est alors appelé un représentant de X.

Propriétés:

Soit \mathcal{R} une relation d'équivalence sur un ensemble E et x, y deux éléments de E.

- $x\mathcal{R}y \implies y \in \overline{x} \implies \overline{x} = \overline{y}$
- Les classes d'équivalence forment une partition de E, autrement dit sont un ensemble de parties non vides, disjointes 2 à 2 et de réunion E.

Sur \mathbb{Z} , la congruence modulo n donne n classes d'équivalences : $\overline{0}$ $\overline{1}$, \cdots , $\overline{n-1}$.

La congruence est compatible avec les opération usuelles dans $\mathbb Z$:

- $ightharpoonup x \equiv y [n] \Leftrightarrow x + a \equiv y + a[n] \text{ (équivalence)}$
- $ightharpoonup x \equiv y [n] \Rightarrow xa \equiv ya[n] \text{ (implication seule)}$

Test 287 Quelles sont les classes d'équivalence de la congruence modulo 2.

11.1.4 Les sous-groupes de \mathbb{Z}

 \mathbb{Z} est un groupe pour l'addition.

Th. \triangleright Sous-groupes de \mathbb{Z}

Tout sous-groupe de $\mathbb Z$ est de la forme $n\mathbb Z$ (il est engendré par un singleton)

 $n\mathbb{Z} = m\mathbb{Z} \Leftrightarrow |n| = |m|.$

ainsi tout sous-groupe de $\mathbb Z$ admet un unique générateur positif ou nul.

Soit G un sous-groupe de $\mathbb Z$ qui contient les éléments 10 et 14.

Test 288

- 1. Montrer que $2 \in G$.
- 2. En déduire que soit $G = \mathbb{Z}$, soit $G = 2\mathbb{Z}$.

11.1.5 PPCM de deux entiers

 $\forall a, b \in \mathbb{Z}, \ a\mathbb{Z} \cap b\mathbb{Z}$ est un sous groupe de \mathbb{Z} donc admet un unique générateur positif m appelé le **Plus Petit Commun Multiple** de a et b.

Justification de la dénomination

- ightharpoonup m est multiple de a et b
- \blacktriangleright Tout multiple commun à a et b est multiple de m

Test 289 Montrer que PPCM(10,15)=30.

Test 290 Donner une condition nécessaire et suffisante sur a et b dans \mathbb{Z} pour que PPCM(a,b) = a.

Propriétés:

- L'opération PPCM définit une loi de composition interne sur Z parfois notée "\".
- \vee est associative $\forall a, b, c \in \mathbb{Z}, \ a \vee (b \vee c) = (a \vee b) \vee c$
- \vee est commutative $\forall a, b \in \mathbb{Z}, \ a \vee b = b \vee a$
- $\forall a \in \mathbb{Z}, \ a \vee 1 = |a|$
- $\forall a \in \mathbb{Z}, \ a \vee 0 = 0$
- $\forall a, b, c \in \mathbb{Z}, \ ac \lor bc = (a \lor b)|c|$

11.1.6 PGCD de deux entiers

 $\forall a, b \in \mathbb{Z}, \ a\mathbb{Z} + b\mathbb{Z}$ est un sous groupe de \mathbb{Z} donc admet un unique générateur positif d appelé le **Plus grand Commun Diviseur** de a et b.

Justification de la dénomination

- ightharpoonup d divise a et b
- \blacktriangleright Tout diviseur commun à a et b divise d

Test 291 Montrer que PGCD(10,15)=5.

Test 292 Donner une condition nécessaire et suffisante sur a et b dans \mathbb{Z} pour que PGCD(a, b) = a.

Propriétés:

- L'opération PGCD définit une loi de composition interne sur Z parfois notée "\\".
- \wedge est associative $\forall a, b, c \in \mathbb{Z}, \ a \wedge (b \wedge c) = (a \wedge b) \wedge c$
- \wedge est commutative $\forall a, b \in \mathbb{Z}, \ a \wedge b = b \wedge a$
- $\forall a \in \mathbb{Z}, \ a \wedge 1 = 1$
- $\forall a \in \mathbb{Z}, \ a \wedge 0 = |a|$
- $\forall a, b, c \in \mathbb{Z}, \ ac \land bc = (a \land b)|c|$

Test 293

Montrer que si l'entier naturel
$$d$$
 divise $(a+b)^2$ et $(a-b)^2$, alors d divise $4ab$ et divise $2(a^2+b^2)$.
En déduire que si $\delta = PGCD((a+1)^2, (a-1)^2)$ alors $\delta = 1$ ou $\delta = 2$ ou $\delta = 4$.

11.1.7 Algorithme d'euclide

Lemme:

Si a = bq + r est la division euclidienne de a par $b \in \mathbb{N}^*$, alors

$$PGCD(a, b) = PGCD(b, r)$$

$\textbf{L'algorithme d'euclide} \quad \text{(pour le calcul du PGCD)}$

Si a et b sont deux entiers relatifs avec b > 0, le PGCD de a et b est le dernier reste non nul dans la suite des divisions euclidiennes :

$$\begin{array}{rclcrcl} a & = & b \, q_1 + r_1 \\ b & = & r_1 \, q_2 + r_2 \\ r_1 & = & r_2 \, q_3 + r_3 \\ & \ddots & \ddots & \ddots \\ r_{n-2} & = & r_{n-1} \, q_n + \boxed{r_n} & \leftarrow \text{ dernier reste non nul} \\ r_{n-1} & = & r_n \, q_{n+1} + \mathbf{0} \end{array}$$

Utilisation de l'algorithme pour déterminer p et q

Si $d = \operatorname{PGCD}(a, b)$, nous savons que : $\exists p, q \in \mathbb{Z}, d = ap + bq$ On peut déterminer un des couples (p, q) en "remontant l'algorithme d'euclide".

Test 294

Utiliser l'algorithme d'euclide pour déterminer le PGCD de 4148 et 1122 que l'on notera
$$d$$
 En déduire deux entiers α et β tels que $d=\alpha 4148+\beta 1122$

Remarque

Une présentation des calculs en 3 colonnes est possible :

Division euclidienne	Reste	Reste en fonction de a et b
$4148 = 1122 \times 3 + 782$	$782 = 4148 - 3 \times 1122$	782 = a - 3b
:	:	:
	•	•

11.1.8 Théorèmes d'arithmétique

Les entiers a et b sont **premiers entre eux** si et seulement si $a \wedge b = 1$.

Attention : ne pas confondre "nombre premier" et " premiers entre eux" qui ont des sens très différents. Deux entiers sont premiers entre eux si et seulement si 1 est le seul diviseur commun positif.



Les entiers a et b sont premiers entre eux

$$\underline{ssi} \quad \exists \ p, q \in \mathbb{Z} \quad a \cdot p + b \cdot q = 1$$

^{1.} Etienne Bézout (1730-1783) mathématicien français

Test 295

En cherchant les diviseurs communs, montrer que 2n+1 et 2(n+1) sont premiers entre eux. Confirmer ceci par le théorème de Bézout.

Th. \triangleright Théorème de Gauss 2

$$a, b, c \in \mathbb{Z}$$

$$\begin{array}{ccc} a \text{ divise } b c & a|b c \\ a \text{ premier avec } b & a \wedge b = 1 \end{array} \} \Rightarrow a|c \quad (a \text{ divise } c)$$

Test 296

Utiliser l'algorithme d'Euclide pour montrer que 125 et 12 sont premiers entre eux et pour trouver le couple (p_0, q_0) qui vérifie $125p_0 + 12q_0 = 1$.

En déduire tous les couples (p,q) qui vérifient 125p + 12q = 1

Test 297

Trouver les couples (p,q) qui vérifient 34p + 38q = 1.

Trois théorèmes indispensables :

 \bullet Si a est premier avec n nombres, alors a est premier avec leur produit.

 \bullet Si n nombres premiers entre eux deux à deux divisent b, alors leur produit divise b

• Le PPCM de deux nombres premiers entre eux est leur produit (en valeur absolue)

$$\boxed{a \wedge b = 1 \quad \Rightarrow \quad a \vee b = |a \, b|}$$

Très utile pour les exercices

Les théorèmes manipulent principalement des nombres premiers entre eux. Pour pouvoir les utiliser avec des entiers quelconques a et b, on pose $\delta = a \wedge b$. L'exercice est équivalent à $a = \delta a'$, $b = \delta b'$ et $a' \wedge b' = 1$.

Conséquences : $PPCM(a, b) \times PGCD(a, b) = |ab|$

Test 298

Trouver un couple d'entiers naturels a et b tels que a + b = 123PGCD(a, b)

Forme irréductible d'un rationnel

Tout rationnel r s'écrit de manière unique sous la forme $r=\frac{a}{b}$ où $a\in\mathbb{Z},\,b\in\mathbb{N}^*$ et $a\wedge b=1$

11.1.9 PGCD de n entiers

Soient a_1, a_2, \ldots, a_n n entiers. Alors il existe un unique entier positif d tel que

- d divise les a_k pour $1 \le k \le n$.
- pour tout d' entier divisant les a_k , d' divise d.

d est appelé **PGCD** des a_k , et est noté

$$d = \bigwedge_{k=1}^{n} a_k$$

Soit $(a_k)_{1 \le k \le n}$ une famille finie de nombres entiers.

- Les a_k sont premiers dans leur ensemble si leur PGCD est 1.
- Les a_k sont premiers deux à deux si pour tout $k \neq k'$, a_k et $a_{k'}$ sont premiers entre eux.
- 2. Carl Friedrich GAUSS (1777-1855) mathématicien allemand

Th. | Relation de Bézout

Si $(a_k)_{1 \le k \le n}$ est une famille finie de nombres entiers de PGCD noté d, il existe une famille d'entiers $(u_k)_{1 < k < n}$ telle que

$$\sum_{k=1}^{n} u_k a_k = d$$

11.2 Nombres premiers

11.2.1 Généralités

 $p \in \mathbb{N}$ est un <u>nombre premier</u> <u>ssi</u> p admet exactement deux diviseurs dans \mathbb{N} , 1 et lui-même. Remarque: Donc exactement 4 dans \mathbb{Z} . Et 1 n'est pas premier!

Propriétés:

 \bullet Si p est un nombre premier alors p est premier avec tous les entiers sauf avec ses multiples :

$$p \wedge a = 1 \Leftrightarrow a \notin p\mathbb{Z}$$

- Deux entiers naturels premiers et distincts sont premiers entre eux.
- ullet Si a est premier et divise le produit bc alors a divise b ou c

Test 299

Un nombre pair peut-il être premier? En déduire tous les entiers naturels p premiers tels que p+1 soit premier.

Test 300

p est un naturel premier. Trouver tous les diviseurs dans \mathbb{N} de p^n $(n \geq 2)$ et leur somme.

11.2.2 Diviseurs premiers

Propriétés:

- Tout entier naturel $n \ge 2$ admet au moins un diviseur premier
- L'ensemble des nombres premiers est infini

11.2.3 Décomposition en facteurs premiers

Th. | Décomposition en facteurs premiers

Tout entier $n \geqslant 2$ admet une et une seule décomposition en facteurs premiers (à l'ordre près) :

 $\forall n \geq 2 \exists k \in \mathbb{N}^* \exists p_1, p_2, \cdots, p_k \text{ nombres premiers distincts } 2 \text{ à } 2,$

$$\exists \alpha_1, \alpha_2, \dots \alpha_k \in \mathbb{N}^* \ n = \prod_{i=1}^k p_i^{\alpha_i}$$

Corollaire: Tout entier naturel $n \ge 2$ non premier admet au moins un diviseur premier p vérifiant: $p \le \sqrt{n}$.

Nous obtenons alors le critère de primalité suivant :

Soit n un entier naturel supérieur ou égal à 2.

Si n n'est divisible par aucun nombre premier plus petit que sa racine carrée,

alors n est premier.

Test 301

Quelle est la forme de la décomposition en facteurs premiers de tout diviseur naturel de 4200?

En déduire le nombre de diviseurs.

Le résultat s'étend aux entiers relatifs quitte à mettre comme facteur un terme $\epsilon \in \{-1, 1\}$.

Si p est un nombre premier, la <u>Valuation p-adique</u>, ou p-valuation, d'un entier N, est l'entier $\nu_p(N)$ exposant de p dans la décomposition de N en produit de facteurs premiers.

En particulier, $\nu_p(N) = 0$ si p ne divise pas N.

Si l'on note $\mathbb P$ l'ensemble des nombres premiers, on peut écrire

$$N = \prod_{p \in \mathbb{P}} p^{\nu_p(N)}$$

ce produit infini pouvant être vu comme fini dans la mesure où seul un nombre fini de termes $p^{\nu_p(N)}$ est distinct de 1.

Remarque

Si a et b sont deux entiers, alors

- 1. a divise b si, et seulement si pour tout p premier, $\nu_p(a) \leq \nu_p(b)$.
- 2. pour tout p premier, $\nu_p(ab) = \nu_p(a) + \nu_p(b)$
- 3. pour tout p premier, $\nu_p(a \wedge b) = \min (\nu_p(a), \nu_p(b))$.
- 4. pour tout p premier, $\nu_p(a \vee b) = \max (\nu_p(a), \nu_p(b))$.

Utilisation

recherche de PGCD et PPCM

Test 302

Décomposer 208 et 270 en facteurs premiers. En déduire leur PGCD et PPCM.

11.3 Calculs avec les congruences

Rappel

La congruence est une relation d'équivalence donc symétrique et transitive. Elle est compatible avec l'addition et partiellement avec la multiplication.

$$ightharpoonup x \equiv y [n] \Leftrightarrow x + a \equiv y + a[n] \text{ (équivalence)}$$

▶
$$x \equiv y [n] \Rightarrow xa \equiv ya[n]$$
 (implication seule)

Elle permet des calculs simplifiés, tous les résultats intermédiaires pouvant être ramenés à l'intervalle [0; n-1].

Multiplier au fur et à mesure en simplifiant à chaque fois.

On pourra décomposer les nombres à multiplier et faire les multiplications successivement en simplifiant modulo [n] à chaque fois.

Test 303

Soit $a \in \mathbb{Z}$ tel que $a \equiv 34[6]$. Calculer modulo 6 le nombre 22a.

Trouver une puissance congrue à 1 ou à -1.

Si $z^b \equiv 1[n]$ alors pour toute puissance a, en déterminant la division euclidienne de a par b donnée par a = bq + r, on a

$$z^a \equiv z^{bq}z^r \equiv 1^q z^r \equiv z^r[n]$$

Test 304

Déterminer le reste de la division euclidienne de 2¹⁴⁹⁵ par 15.

Disjonction de cas sur les classes d'équivalence.

On teste chacun des restes possibles dans la division euclidienne par n.

Test 305

Soit $x \in \mathbb{Z}$. Résoudre $x^2 \equiv 4[5]$.

Inverse modulaire.

Soit $a \in \mathbb{Z}$ premier avec n. On cherche u tel que $au \equiv 1[n]$.

a et n étant premiers entre eux, par Bézout il existe $(u,v) \in \mathbb{Z}^2$ tels que au + nv = 1 autrement dit $au \equiv 1[n]$.

La descente et la remontée d'Euclide nous donne u de manière explicite.

Cette technique permet de résoudre des équations modulo [n].

Test 306

Soit $x \in \mathbb{Z}$. Résoudre $3x \equiv 7[16]$.

Th. | Combinaison et congruence

Soit p un nombre premier.

- 1. Pour tout $k \in [1, p-1]$, le coefficient binomial $\begin{pmatrix} p \\ k \end{pmatrix}$ est divisible par p.

 2. Pour tout $(a,b) \in \mathbb{Z}^2$, on a $(a+b)^p \equiv a^p + b^p$ [p]

Th. Petit théorème de Fermat ³

Pour tout nombre premier p et tout entier relatif n, on a $n^p \equiv n$ [p]

^{3.} Pierre de Fermat (1605-1665) mathématicien français

11.4 Exercices

Exercice 1

Soient a, b, c trois entiers relatifs. On considère l'équation : ax + by = c, dont on recherche les solutions dans \mathbb{Z}^2 .

- 1. Donner une condition nécessaire et suffisante pour que cette équation admette une solution.
- 2. Soit (x_0, y_0) une solution du problème de Bézout : $ax_0 + by_0 = c$. Déterminer toutes les solutions de ax + by = c en fonction de a, b, c, d, x_0 et y_0 .
- 3. Résoudre dans \mathbb{Z}^2 : 2520x 3960y = 6480.

Exercice 2

Résoudre dans \mathbb{Z} :

- 1. 95x + 71y = 46.
- 2. 20x 53y = 3.
- 3. 12x + 15y + 20z = 7.

Exercice 3

Congruences simultanées

Résoudre :

1.
$$\begin{cases} x \equiv 2 [140] \\ x \equiv -3 [99] \end{cases}$$

1.
$$\begin{cases} x \equiv 2 \ [140] \\ x \equiv -3 \ [99] \end{cases}$$
2.
$$\begin{cases} x \equiv 3 \ [4] \\ x \equiv -2 \ [3] \\ x \equiv 7 \ [5] \end{cases}$$

Exercice 4

Décomposition à coefficients positifs

Soient $a, b \in \mathbb{N}^*$ premiers entre eux. Montrer que : $\forall x \geq ab, \exists u, v \in \mathbb{N}$ tels que au + bv = x.

Exercice 5

Sommes de nombres impairs

Soit $n \in \mathbb{N}$, $n \geq 2$. Montrer que si N est la somme de n nombres impairs consécutifs, alors N n'est pas premier.

Exercice 6

 $\overline{\text{Montrer que}} : \forall n \in \mathbb{Z}, n^7 \equiv n \text{ [42]}.$

Exercice 7

- 1. Vérifier que $10^6 \equiv 1$ [7].
- 2. Montrer que $\sum_{k=1}^{10} (10^{10})^k \equiv 4$ [7].

Exercice 8

Suites récurentes linéaires

Montrer que pour tout $n \in \mathbb{N}$, $3^{2n+1} + 2^{n+2}$ est divisible par 7.

Exercice 9

Nombres de Mersenne

On note $M_n = 2^n - 1$ (*n*-ième nombre de Mersenne).

- 1. Montrer que : M_n est premier $\Rightarrow n$ est premier.
- 2. Vérifier que M_{11} n'est pas premier.

Exercice 10

Soit $n \in \mathbb{N}^*$, déterminer le reste de la division euclidienne de $2^{10n-7} + 3^{5n-2}$ par 11.

Exercice 11

Cubes consécutifs

Montrer que la somme de trois cubes consécutifs est toujours divisible par 9.

Exercice 12

Montrer que pour tout entier $n \in \mathbb{Z}$, n(n+1)(7n+2) est divisible par 6.

Exercice 13

Soient $a, b, c \in \mathbb{Z}$ tels que $a \wedge b = 1$. Montrer que $a \wedge (bc) = a \wedge c$.

Exercice 14

Soient a, b entiers, $d = a \wedge b$, $m = a \vee b$. Chercher $(a + b) \wedge m$.

Exercice 15

pgcd et ppcm imposés

Soient $d, m \in \mathbb{N}^*$. Donner une condition nécessaire et suffisante sur d et m pour qu'il existe $a, b \in \mathbb{Z}$ tels que $a \wedge b = d$ et $a \vee b = m$.

Résoudre ce problème pour d = 50 et m = 600.

11.5 Exercices Complémentaires

Exercice 1

Soient $a, b, a', b' \in \mathbb{Z}$ avec $b \wedge b' = 1$. Montrer que le système : $\begin{cases} x \equiv a \ [b] \\ x \equiv a' \ [b'] \end{cases}$ possède des solutions et qu'elles sont congrues entre elles modulo bb'. Généraliser.

Exercice 2

Une bande de 17 pirates dispose d'un butin composé de N pièces d'or d'égale valeur. Ils décident de se le partager également et de donner le reste au cuisinier (non pirate). Celui ci reçoit 3 pièces. Mais une rixe éclate et 6 pirates sont tués. Tout le butin est reconstitué et partagé entre les survivants comme précédemment; le cuisinier reçoit alors 4 pièces.

Dans un naufrage ultérieur, seuls le butin, 6 pirates et le cuisinier sont sauvés. Le butin est à nouveau partagé de la même manière et le cuisinier reçoit 5 pièces.

Quelle est alors la fortune minimale que peut espérer le cuisinier lorsqu'il décide d'empoisonner le reste des pirates?

Exercice 3

Soit $p \in \mathbb{N}^*$ premier et $n \in \mathbb{N}^*$, n < p. Montrer que $\frac{(p-1)(p-2)\dots(p-n)}{n!} - (-1)^n$ est un entier divisible par p.

Exercice 4

Soient $x, y \in \mathbb{N}$, $y \geq 3$. Montrer par récurrence sur y que : $3^x \equiv 1$ $[2^y] \Leftrightarrow 2^{y-2} \mid x$. Trouver tous les couples d'entiers $x, y \in \mathbb{N}$ tels que $3^x = 2^y + 1$.

Exercice 5

Soient $a, b, c \in \mathbb{N}^*$. Quand a-t-on pgcd $(a, b, c) \times \operatorname{ppcm}(a, b, c) = abc$?

Exercice 6

Soient $a, b \in \mathbb{N}^*$ premiers entre eux tels que ab est un carré parfait. Montrer que a et b sont des carrés parfaits.

Exercice 7

Soient $a, b \in \mathbb{N}^*$ et m, n premiers entre eux tels que $a^n = b^m$. Montrer qu'il existe $c \in \mathbb{N}^*$ tel que $a = c^m$ et $b = c^n$.

Exercice 8

Soit $n \in \mathbb{N}$. Chercher $(n^3 + n) \wedge (2n + 1)$.

Exercice 9

Soient $a, m, n \in \mathbb{N}^*$, $a \ge 2$, et $d = (a^n - 1) \wedge (a^m - 1)$.

- 1. Soit n = qm + r la division euclidienne de n par m. Démontrer que $a^n \equiv a^r [a^m 1]$.
- 2. En déduire que $d = (a^r 1) \wedge (a^m 1)$, puis $d = a^{(n \wedge m)} 1$.
- 3. A quelle condition $a^m 1$ divise-t-il $a^n 1$?