Devoir Maison 11 - Eléments de Correction

Exercice 1

1. (a) On a : $f_n(0) = -4$ et $f_n \to +\infty$ en $+\infty$; f_n est dérivable sur \mathbb{R}_+ et $f'_n(x) = nx^{n-1} + 9x = x(nx^{n-1} + 9) > 0$.

 f_n est donc bijective de \mathbb{R}_+ dans $[-4,+\infty[$. Comme $0 \in [-4,+\infty[$, l'équation $f_n(x)=0$ a donc une unique solution dans \mathbb{R}_+ . On a donc $u_n \geq 0$ et $f_n(u_n)=0$.

(b) Pour calculer u_1 et u_2 , il faut résoudre $f_1(x) = 0$ et $f_2(x) = 0$:

 $f_1(x) = x + 9x^2 - 4$ polynôme du second dégré de déterminant : $\Delta = 1 + 4.4.9 = 145$ donc $u_1 = \frac{-1 + \sqrt{145}}{18}$..qui est la racine positive de cette équation. $f_2(x) = x^2 + 9x^2 - 4 = 10x^2 - 4 = 10(x - \sqrt{2/5})(x + \sqrt{2/5})$ donc $u_2 = \sqrt{2/5}$.

(c) On a $f_n(2/3) = (2/3)^n + 9(2/3)^2 - 4 = (2/3)^n > 0$ et $f_n(0) = -4$

Donc $f_n(0) < f_n(u_n) < f_n(2/3)$ et comme f_n est strictement croissante sur \mathbb{R}^+ et qu'ils ens osnt éléments, on a $0 \le u_n \le \frac{2}{3}$.

et donc $\forall n \in \mathbb{N}^*, u_n \in]0, \frac{2}{3}[.$

- 2. (a) Soit $x \in]0,1[$, on a : $f_{n+1}(x) f_n(x) = x^{n+1} x^n = x^n(x-1)$ et comme x < 1 et $x^n > 0$ on a bien $f_{n+1}(x) < f_n(x)$.
- (b) Donc, comme $u_n \in]0, \frac{2}{3}[$, ona $u_n \in]0, 1[$ et $f_{n+1}(u_{n+1}) = 0 < f_n(u_{n+1}).$

Donc $f_n(u_{n+1}) > 0 = f_n(u_n)$ et comme f_n est strictement croissante sur \mathbb{R}_+ et que u_n et u_{n+1} en sont éléments, on a alors $u_{n+1} > u_n$ pour tout entier n et la suite u est croissante.

- (c) u est croissante et majorée par $\frac{2}{3}$ donc elle est convergente vers ℓ avec $0 \le \ell \le \frac{2}{3}$.
- 3. (a) Comme $0 \le u_n \le 2/3$ et que la fonction puissance n est strictement coirssante pour n > 0 sur \mathbb{R}^+ (sur \mathbb{R}^- celà dépendrait de la parité de n) alors $0^n \le (u_n)^n \le (2/3)^n$ et comme |2/3| < 1 on a $(2/3)^n \to 0$ donc par encadrement $u_n \to 0$
 - (b) Or $u_n^n + 9 u_n^2 4 = 0$ alor spar passage à la limite,

Donc
$$9\ell^2 - 4 = 0$$
 et $\ell = \frac{2}{3}$ car $\ell \ge 0$. Conclusion : $u_n \underset{n \to +\infty}{\longrightarrow} \ell = \frac{2}{3}$

Exercice 2

Les questions 2 et 3 sont indépendantes.

On considère la fonction g définie sur \mathbb{R} par $g(x) = e^x - x$.

Pour chaque entier naturel n supérieur ou égal à 2, on considère l'équation notée $(E_n):g\left(x\right)=n,$ d'inconnue le réel x..

1. (a) g est dérivable sur \mathbb{R} et $g'(x) = e^x - 1$ donc

x	$-\infty$		0		$+\infty$
g'(x)		- /	0	<i>></i> +	
$g\left(x\right)$	$+\infty$	V	1	7	$+\infty$

En $+\infty : g(x) = e^x - x = e^x (1 - x/e^x) \to +\infty \text{ car } x = o(e^x)$

 $\operatorname{En} -\infty : g(x) = e^x - x \to +\infty$

(b) Comme g est continue et strictement décroissante sur \mathbb{R}^- , elle est bijective de \mathbb{R}^- dans $[g(0), \lim_{\infty} g] = [1, +\infty[$

Comme $n \geq 2$ appartient à $[1, +\infty[$, l'équation a une unique solution sur \mathbb{R}^- .

et comme $g(0) = 1 \neq 2$, alors $\alpha_n \neq 0$

et de même sur \mathbb{R}^+

Conclusion: (E_n) admet exactement deux solutions: $\alpha_n < 0$ et $\beta_n > 0$

2. Dans cette question on note $(u_k)_{k\in\mathbb{N}}$ la suite ainsi définie :

$$\left\{ \begin{array}{l} u_0 = -1 \\ \text{Pour tout entier naturel } k, \; u_{k+1} = e^{u_k} - 2 \end{array} \right.$$

(a) On rappelle que α_2 est le réel strictement négatif obtenu à la question 1.(b) lorsque n=2

On a
$$g(-1) = e^{-1} + 1 < 2$$
 car $-1 < 0$ d'où $e^{-1} < e^0 = 1$ et $g(-2) = e^{-2} + 2 > 2$

Donc $g(-1) < g(\alpha_0) < g(-2)$ et comme g est strictement décroissante sur \mathbb{R}^- ,

Conclusion: $-2 \le \alpha_2 \le -1$

(b) On a $2 = g(\alpha_2) = e^{\alpha_2} - \alpha_2$ donc $e^{\alpha_2} - 2 = \alpha_2$.

Pour k = 0 on a $u_0 = -1$ donc $\alpha_2 \le u_0 \le -1$

Soit $k \geq 0$ tel que $\alpha_2 < u_k < -1$.

alors,comme exp est strictement croissante sur \mathbb{R} , $e^{\alpha_2} - 2 \le e^{u_n} - 2 \le e^{-1} - 2$ et donc

$$\alpha_2 \le u_{k+1} \le e^{-1} - 2 \le -1 \text{ car } e^{-1} \le 1$$

Conclusion: pour tout entier naturel $k: \alpha_2 < u_k < -1$

(c) Sur l'intervalle $]-\infty,-1]$ on a $\exp'(x)=e^x\leq e^{-1}=\frac{1}{e}$ donc $0\leq \exp'(x)\leq \frac{1}{e}$

Donc d'après l'inégalité des accroissements finis si $b \ge a$ sont dans cet intervalle, $0 < e^b - e^a < \frac{1}{a}(b-a)$

N.B. pour l'IAF sans valeur absolue, l'ordre des termes est impératif;

Conclusion : pour tous réels a et b tels que $a \le b \le -1$, $0 < e^b - e^a < \frac{1}{e}(b-a)$.

(d) Pour tout entier naturel k, $u_{k+1}-\alpha_2=e^{u_k}-2-(e^{\alpha_2}-2)$ car $\alpha_2=e^{\alpha_2}-2$ donc $u_{k+1}-\alpha_2=e^{u_k}-e^{\alpha_2}$

On a alors:

pour
$$k = 0 : u_0 - \alpha_2 = -1 - \alpha_2$$
 et comme $-1 \le \alpha_2 \le -2$ alors $0 \le u_0 - \alpha_2 \le 1 = \left(\frac{1}{e}\right)^0$

Soit $k \ge 0$ tel que $0 \le u_k - \alpha_2 \le \left(\frac{1}{e}\right)^k$

comme alors $u_k \le \alpha_2 \le -1$ on a $0 \le u_{k+1} - \alpha_2 \le \frac{1}{e} (u_k - \alpha_2) \le \left(\frac{1}{e}\right)^{k+1}$ donc par récurrence,

Conclusion: pour tout entier naturel $k: 0 \le u_k - \alpha_2 \le \left(\frac{1}{e}\right)^k$.

(e) Comme $\left|\frac{1}{e}\right| < 1$ alors $\left(\frac{1}{e}\right)^k \to 0$ et par encadrement $u_k - \alpha_2 \to 0$ et Conclusion : $\lim_{k \to +\infty} u_k = \alpha_2$

Exercice 3

 $Questions\ liminaires$

• Pour x > 0, nous avons $\sqrt{x+1} - \sqrt{x} = \frac{x+1-x}{\sqrt{x+1}+\sqrt{x}}$.

Or
$$\sqrt{x+1} > \sqrt{x} \Rightarrow \sqrt{x+1} + \sqrt{x} > 2\sqrt{x} > 0 \Rightarrow \frac{1}{\sqrt{x+1} + \sqrt{x}} < \frac{1}{2\sqrt{x}}$$
Conclusion
$$\forall x > 0, \quad \sqrt{x+1} - \sqrt{x} \leqslant \frac{1}{2\sqrt{x}} \quad (L_1)$$

• La fonction $x \mapsto \ln(1+x)$ est concave sur $]-1,+\infty[$. La courbe représentative est située sous ses tangentes, en particulier sous la tangente au point d'abscisse 0.

Cette tangente a pour équation y = x d'où $\forall x > -1, \ln(x+1) \leqslant x$ (L₂)

Note : on peut également obtenir se résultat par une étude rapide de la fonction φ définie pour x>-1 par $\varphi(x)=\ln(1+x)-x$:

 $\varphi'(x) = \frac{1}{x+1} - 1 = -\frac{x}{x+1}$ ce qui donne le tableau des variations

- 1. $\forall n \in \mathbb{N}^*, \quad u_n = \frac{\sqrt{(n+a)!}}{\prod_{j=1}^n (1+\sqrt{j})}$
 - (a) Il est clair que la suite est définie, strictement positive.

On peut utiliser le quotient.

$$\forall \ n \geqslant 2: \quad \frac{u_n}{u_{n-1}} = \frac{\sqrt{n+a}}{1+\sqrt{n}}$$

$$\Leftrightarrow \sqrt{n+a} < 1 + \sqrt{n}$$

$$\Leftrightarrow n+a < 1 + n + 2\sqrt{n}$$
 quantités positives
$$\Leftrightarrow a-1 < 2\sqrt{n}$$

(b) Nous avons : $\frac{u_n}{u_{n-1}} < 1 \quad \stackrel{\Leftrightarrow}{\Leftrightarrow} a-1 < 2\sqrt{n} \\ \Leftrightarrow (a-1)^2 < 4n \qquad a-1 \text{ est positif ou nul} \\ \Leftrightarrow n > \frac{(a-1)^2}{4} \\ \Leftrightarrow n > N$

où $N = E\left(\frac{(a-1)^2}{4}\right)$ La suite étant positive : $u_n < u_{n-1} \Leftrightarrow n > N$ La suite $(u_n)_{n \geq N}$ est décroissante

- (c) La suite $(u_n)_{n\geqslant N}$ est décroissante minorée par 0 donc $(u_n)_{n\in N^*}$ converge
- 2. (a) D'après **1-a**: $\left(\frac{u_n}{u_{n-1}} 1\right)\sqrt{n} = \left(\sqrt{n+a} \sqrt{n} 1\right)\frac{\sqrt{n}}{1+\sqrt{n}}$.

 Or, quand $n \to +\infty$, $\frac{\sqrt{n}}{1+\sqrt{n}} \to 1$ et $\sqrt{n+a} \sqrt{n} = \frac{a}{\sqrt{n+a}+\sqrt{n}} \to 0$ CONCLUSION $\lim_{n \to +\infty} \left(\frac{u_n}{u_{n-1}} 1\right)\sqrt{n} = -1$

D'où l'existence d'un entier M à partir duquel cette quantité appartient à l'intervalle $\left[-1-\frac{1}{2},-1+\frac{1}{2}\right]$. Dans ces conditions, $\left(\frac{u_n}{u_{n-1}}-1\right)\sqrt{n}\leqslant -\frac{1}{2}$

d'où
$$\exists \ M \in \mathbb{N}, \quad \forall \ n, \quad n \geqslant M \ \Rightarrow \ \frac{u_n}{u_{n-1}} \leqslant 1 - \frac{1}{2\sqrt{n}}$$

(b) Rappelons que $\frac{u_n}{u_{n-1}} > 0$. En utilisant ce qui précède, L₂ (avec $x = -\frac{1}{2\sqrt{n}} > -1$) puis L₁ (avec x=n;0), nous avons :

(c) Il suffit alors d'ajouter les égalités précédentes pour les valeurs $M, M+1, \cdots, n$. Le principe des dominos donne :

$$\ln \frac{u_M}{u_{M-1}} \leqslant \sqrt{M} - \sqrt{M+1} \\ \ln \frac{u_{M-1}}{u_M} \leqslant \sqrt{M+1} - \sqrt{M+2} \\ \dots \\ \ln \frac{u_n}{u_{n-1}} \leqslant \sqrt{n} - \sqrt{n+1}$$
 $\Rightarrow \ln \frac{u_n}{u_{M-1}} \leqslant \sqrt{M} - \sqrt{n}$ d'où $\lim_{n \to +\infty} \ln \frac{u_n}{u_{M-1}} = -\infty$ soit $\lim_{n \to +\infty} \frac{u_n}{u_{M-1}} = 0$
$$\lim_{n \to +\infty} u_n = 0$$