Devoir Surveillé 01 - Eléments de Correction

Exercice 1

1. On démontre par récurrence, que pour tout entier naturel $n: u_n > 4000$.

Initialisation : $u_0 = 10000 > 4000$: l'inégalité est vraie au rang 0;

 $H\acute{e}r\acute{e}dit\acute{e}$: supposons que pour $n \in \mathbb{N}$, on ait $u_n > 4000$, alors par produit par 0,95 > 0, on a $0,95u_n > 0,95 \times 4000$, soit :

 $0,95u_n > 3800$, et en ajoutant 200 à chaque membre :

 $0,95u_n+200>3800+200,$ c'est-à-dire $u_{n+1}>4000$: la relation est vraie au rang n+1.

Conclusion : l'inégalité est vraie au rang 0 et si elle est vraie au rang $n \in \mathbb{N}$, elle est vraie au rang n+1 : d'après le principe de récurrence $u_n > 4000$ quel que soit le naturel n.

- 2. On sait que si la suite est décroissante et minorée par 4000, elle converge vers une limite ℓ , avec $\ell \ge 4000$.
- 1. Pour n = 0, on a $v_0 = u_0 4000 = 10000 4000 = 6000$.
- 2. Au choix:

Méthode 1 : pour $n \in \mathbb{N}$, on a :

$$v_{n+1} = u_{n+1} - 4000 = 0,95u_n + 200 - 4000 = 0,95u_n - 3800 = 0,95\left(u_n - \frac{3800}{0,95}\right) = 0,95\left(u_n - 4000\right) = 0,95v_n.$$

L'égalité $v_{n+1} = 0,95v_n$ vraie quel que soit $n \in \mathbb{N}$ montre que la suite (v_n) est géométrique de raison égale à 0,95.

Méthode 2 : pour $n \in \mathbb{N}$, on a vu que $u_n > 4000$, donc $v_n = u_n - 4000 > 0$.

On peut donc calculer :
$$\frac{v_{n+1}}{v_n} = \frac{u_{n+1} - 4000}{u_n - 4000} = \frac{0.95u_n + 200 - 4000}{u_n - 4000} = \frac{0.95u_n + 2000}{u_n - 4000} =$$

$$\frac{0,95u_n - 3800}{u_n - 4000} = \frac{0,95u_n - 3800}{u_n - 4000} = \frac{0,95\left(u_n - \frac{3800}{0.95}\right)}{u_n - 4000} = \frac{0,95\left(u_n - 4000\right)}{u_n - 4000} = 0,95.$$

Cette égalité vraie pour tout naturel n, montre que la suite (v_n) est géométrique de raison égale à 0,95.

3. D'après le résultat précédent, on sait que que pour tout $n \in \mathbb{N}$,

$$v_n = v_0 \times 0,95^n = 6000 \times 0,95^n.$$

Or $v_n = u_n - 4000 \Leftrightarrow u_n = v_n + 4000 = 6000 \times 0,95^n + 4000.$

4. Comme 0 < 0,95 < 1, on sait que $\lim_{n \to +\infty} 0,95^n = 0$, donc $\lim_{n \to +\infty} 6000 \times 0,95^n = 0$, d'où $\lim_{n \to +\infty} u_n = 4000$ (par somme de limites).

Exercice 2

Partie A: Étude d'une fonction auxiliaire

On définit sur \mathbb{R} la fonction g définie par

$$g(x) = e^{2x} - e^x + 1$$

- 1. On a $\lim_{x \to -\infty} 2x = X = -\infty$, donc $\lim_{x \to -\infty} e^X = 0$; d'autre part $\lim_{x \to -\infty} e^x = 0$, donc par somme de limites $\lim_{x \to -\infty} g(x) = 1$.
- 2. On peut écrire $q(x) = e^{x} (e^{x} 1 + e^{-x})$.

Comme $\lim_{x\to -\infty} \mathrm{e}^x = +\infty$ et $\lim_{x\to -\infty} \mathrm{e}^{-x} = 0$, on a par somme de limites $\lim_{x\to -\infty} \mathrm{e}^x - 1 + \mathrm{e}^{-x} = +\infty$ et enfin par produit de limites $\lim_{x\to -\infty} g(x) = +\infty$.

- 3. g somme de fonctions dérivables sur \mathbb{R} est dérivable sur cet intervalle et $g'(x) = 2e^{2x} e^x = e^x (2e^x 1)$.
- 4. D'après la question précédente comme $e^x > 0$, quel que soit le réel x, le signe de g'(x) est celui de $2e^x 1$.
 - $2e^x 1 = 0 \Leftrightarrow 2e^x = 1 \Leftrightarrow e^x = \frac{1}{2} \Leftrightarrow x = \ln \frac{1}{2} = -\ln 2$ (par croissance de la fonction logarithme népérien);
 - $2e^x 1 > 0 \Leftrightarrow 2e^x > 1 \Leftrightarrow e^x > \frac{1}{2} \Leftrightarrow x > \ln \frac{1}{2} = -\ln 2$;
 - $2e^x 1 < 0 \Leftrightarrow 2e^x < 1 \Leftrightarrow e^x < \frac{1}{2} \Leftrightarrow x < \ln \frac{1}{2} = -\ln 2.$

La fonction g est donc décroissante sur] $-\infty$; $-\ln 2$ [et croissante sur] $-\ln 2$; $+\infty$ [.

Donc $g(-\ln 2) = e^{-2\ln 2} - e^{-\ln 2} + 11 = \frac{1}{e^{2\ln 2}} - \frac{1}{e^{\ln 2}} + 1 = \frac{1}{e^{\ln 4}} - \frac{1}{e^{\ln 2}} + 1 = \frac{1}{4} - \frac{1}{2} + 1 = \frac{3}{4}$ est le minimum de la fonction g sur \mathbb{R} .

- 5. Le minimum de la fonction g est supérieur à zéro, donc quel que soit $x \in \mathbb{R}$, g(x) > 0.
- 6. En posant $X = e^x$, $g(x) = g(X) = X^2 X + 1 = \left(X \frac{1}{2}\right)^2 \frac{1}{4} + 1 = \left(X \frac{1}{2}\right)^2 + \frac{3}{4}$.

Sous cette écriture on voit que g(X) est un trinôme somme de deux carrés dont l'un est supérieur à zéro, donc g(X) > 0.

Partie B

1. Quel que soit $x \in \mathbb{R}$, $f(x) = \ln g(x)$.

Or on a vu dans la partie précédente que g(x) > 0, donc f est définie sur \mathbb{R} .

2. $f(x) = \ln g(x)$ entraı̂ne

$$f'(x) = \frac{g'(x)}{g(x)} = \frac{2e^{2x} - e^x}{e^{2x} - e^x + 1}.$$

3. Soit \mathcal{T}_0 la tangente au point d'abscisse 0 :

On a $M(x; y) \in \mathcal{T}_0 \Leftrightarrow y - f(0) = f'(0)(x - 0)$.

- $f(0) = \ln(1 1 + 1) = \ln 1 = 0$;
- $f'(0) = \frac{2-1}{1-1+1} = 1$, donc:

 $M(x ; y) \in \mathcal{T}_0 \Leftrightarrow y - 0 = 1(x - 0) \Leftrightarrow y = x.$

4. On a vu que $f'(x) = \frac{2e^{2x} - e^x}{e^{2x} - e^x + 1} = \frac{g'(x)}{g(x)}$ et dans la partie que le dénominateur g(x) > 0; le signe de f'(x) est donc celui de g'(x) étudié dans la partie A.

Donc f'(x) < 0 sur $]-\infty$; $-\ln 2[$, d'où la fonction f est décroissante sur cet intervalle et f'(x) > 0 sur $]-\ln 2$; $+\infty[$, d'où la fonction f est croissante sur cet intervalle.

- 5. $f(-\ln 2) = \ln g(-\ln 2) = \ln \frac{3}{4} \approx -0.29$;
 - On a vu que $\lim_{x \to +\infty} g(x) = +\infty$, donc par composition $\lim_{x \to +\infty} \ln g(x) = +\infty$.

La fonction f est continue car dérivable sur $]-\ln 2$; $+\infty[$, strictement croissante de $f(-\ln 2) < 2$ à plus l'infini : d'après le théorème des valeurs intermédiaires il existe un réel unique

$$\alpha \in]-\ln 2$$
; $+\infty[$ tel que $f(\alpha)=0$.

La calculatrice donne :

$$f(1) \approx 1,7 \text{ et } f(2) \approx 3,8, \text{ donc } 1 < \alpha < 2;$$

$$f(1,1) \approx 1,9 \text{ et } f(1,2) \approx 2,2, \text{ donc } 1,1 < \alpha < 1,2;$$

$$f(1,12) \approx 1,99 \text{ et } f(1,13) \approx 2,01, \text{ donc } 1,12 < \alpha < 1,13.$$

Partie C

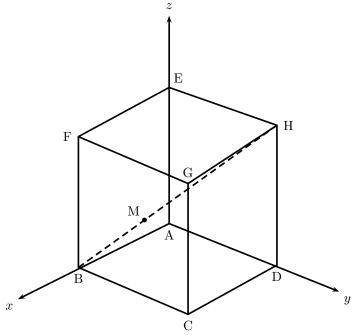
Conjecture 1 : d'après le résultat précédent elle est vraie;

Conjecture 2 : elle est fausse f est croissante sur $] - \ln 2$; $+\infty[$;

Conjecture 3 : on a vu que l'équation de cette tangente est y = x + 1 : la conjecture est fausse.

Exercice 3

1. Dans le repère (A ; Vect AB, Vect AD, Vect AE), on a B(1;0;0), D(0;1;0), E(0;0;1), G(1;1;1), H(0;1;1).



- 2. (a) [EG], [GD] et [ED] sont les hypoténuses de triangles rectangles isocèles de côté 1, donc EG = GD = ED = $\sqrt{2}$: le triangle EGD est équilatéral.
 - (b) Puisque $c = \sqrt{2}$, on a $\mathcal{A}(EGD) = \frac{\sqrt{3}}{4} \times (\sqrt{2})^2 = \frac{\sqrt{3}}{4} \times 2 = \frac{\sqrt{3}}{2}$.
- 3. On a $\overrightarrow{BH} \begin{pmatrix} -1\\1\\1 \end{pmatrix}$, donc $\overrightarrow{BM} = \frac{1}{3}\overrightarrow{BH} \begin{pmatrix} -\frac{1}{3}\\\frac{1}{3}\\\frac{1}{3} \end{pmatrix} = \begin{pmatrix} x_{\mathrm{M}} 1\\y_{\mathrm{M}} 0\\z_{\mathrm{M}} 0 \end{pmatrix}$.

On a donc : $x_{\text{M}} = 1 - \frac{1}{3} = \frac{2}{3}$; $y_{\text{M}} = \frac{1}{3}$; $z_{\text{M}} = \frac{1}{3}$.

Conclusion : M a pour coordonnées $\left(\frac{2}{3}; \frac{1}{3}; \frac{1}{3}\right)$.

4. (a) On a $\overrightarrow{EG}\begin{pmatrix} 1\\1\\0 \end{pmatrix}$: donc $\overrightarrow{n} \cdot \overrightarrow{EG} = -1 + 1 + 0 = 0$:

$$\overrightarrow{ED} \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} : \operatorname{donc} \overrightarrow{n} \cdot \overrightarrow{ED} = 0 + 1 - 1 = 0.$$

Conclusion : \overrightarrow{n} est orthogonal à deux vecteurs non colinéaires du plan (EGD) : c'est un vecteur normal à ce plan.

(b) On sait qu'un plan d'équation ax + by + cz + d = 0 a un vecteur normal de coordonnées (a ; b ; c), donc :

 $P(x ; y ; z) \in (EGD) \Leftrightarrow -x + y + z + d = 0$

Comme E(0; 0; 1) \in (EGD) \Leftrightarrow 0 + 0 + 1 + d = 0 \Leftrightarrow d = -1.

Finalement : le plan (EGD) a pour équation -x + y + z - 1 = 0.

(c) La droite \mathcal{D} contient M et a pour vecteur directeur Vect n vecteur normal au

plan (EGD), donc avec
$$\operatorname{Vect} MP \begin{pmatrix} x - \frac{2}{3} \\ y - \frac{2}{3} \\ z - \frac{1}{3} \end{pmatrix}$$
:

 $P(x ; y ; z) \in \mathcal{D} \Leftrightarrow \operatorname{Vect} MP = t \operatorname{Vect} n, \operatorname{avec} t \in \mathbb{R}, \operatorname{soit} :$

$$\begin{cases} x - \frac{2}{3} &= -t \\ y - \frac{1}{3} &= t \\ z - \frac{1}{3} &= t \end{cases}, t \in \mathbb{R} \Leftrightarrow \begin{cases} x &= \frac{2}{3} - t \\ y &= \frac{1}{3} + t \\ z &= \frac{1}{3} + t \end{cases}, t \in \mathbb{R}.$$

Exercice 4

Partie 1

On note (E) l'équation différentielle : $y' = -y + e^{-x}$.

- 1. On sait que les solutions de l'équation (H): y' = -y sont les fonctions $x \longmapsto Ke^{-x}$, avec $K \in \mathbb{R}$.
- 2. Les solutions de l'équation (E) sont donc les fonctions

$$x \longmapsto xe^{-x} + Ke^{-x} = (x + K)e^{-x}, K \in \mathbb{R}.$$

3. Avec $f(x) = (x + K)e^{-x}$ et f(0) = 2, on a : $(0 + K)e^{-0} = 2 \Leftrightarrow K = 2$. Conclusion : $f(x) = (x + 2)e^{-x}$.

Partie 2

1. (a) Puisque f est solution de l'équation différentielle (E); on a donc

$$f'(x) = -f(x) + e^{-x} = -(x+2)e^{-x} + e^{-x} = e^{-x}(-x-2+1) = (-x-1)e^{-x}.$$

(b) Comme quel que soit $x \in \mathbb{R}$, $e^{-x} > 0$, le signe de f'(x) est celui de -x - 1. Donc :

$$-x-1>0 \Leftrightarrow -1>x \Leftrightarrow x<-1\,;$$

$$-x-1 < 0 \Leftrightarrow -1 < x \Leftrightarrow x > -1$$
:

$$-x-1=0 \Leftrightarrow -1=x$$
.

La fonction est donc croissante sur] $-\infty$; -1[, décroissante sur] -1 ; $+\infty$ [et a donc un maximum $f(-1) = (-1+2)e^{-(-1)} = e$.

- 2. (a) De $f'(x) = -f(x) + e^{-x}$, on obtient en dérivant : $f''(x) = -f'(x) e^{-x} = -(-x-1)e^{-x} e^{-x} = e^{-x}(x+1-1) = xe^{-x}.$
 - (b) D'après le résultat précédent sur $[0; +\infty[, x \ge 0 \text{ et } e^{-x} > 0, \text{ donc le produit } xe^{-x} \ge 0$: la dérivée seconde est positive, la fonction f est convexe sur $[0; +\infty[$.

Exercice 5

Partie A - Etude d'une fonction

$$f(x) = \frac{e^{2x} - 1}{e^{2x} + 1},$$

1. Pour tout réelx:

 $f(-x) = \frac{e^{-2x} - 1}{e^{-2x} + 1}$ soit en multipliant chaque terme par e^{2x} :

$$f(-x) = \frac{1 - e^{2x}}{1 + e^{2x}} = -\frac{e^{2x} - 1}{e^{2x} + 1} = -f(x)$$
: la fonction f est impaire.

- 2. Calculons : $f(x) + 1 = \frac{e^{2x} 1}{e^{2x} + 1} + 1 = \frac{e^{2x} 1 + e^{2x} + 1}{e^{2x} + 1} = \frac{2e^{2x}}{e^{2x} + 1} > 0$ comme quotient de deux termes supérieurs à zéro. Donc pour tout réel x, f(x) > -1.
 - Calculons de même : $f(x) 1 = \frac{e^{2x} 1}{e^{2x} + 1} 1 = \frac{e^{2x} 1 e^{2x} 1}{e^{2x} + 1} = \frac{-2}{e^{2x} + 1} < 0$ car le dénominateur est positif.

$$f(x) - 1 < 0 \Leftrightarrow f(x) < 1.$$

f est minorée par -1 et majorée par 1.

- 3. On sait que $\lim_{x\to-\infty} e^{2x}=0$, donc $\lim_{x\to-\infty} f(x)=-1$. Ce résultat signifie que la droite d'équation y=-1 est asymptote horizontale à Γ au voisinage de moins l'infini.
 - En multipliant chaque terme par e^{-2x} , on peut écrire $f(x) = \frac{1 e^{-2x}}{1 + e^{-2x}}$.

Comme $\lim_{x\to +\infty} \mathrm{e}^{-2x}=0$, on en déduit que $\lim_{x\to +\infty}=1$. Ce résultat signifie que la droite d'équation y=1 est asymptote horizontale à Γ au voisinage de plus l'infini.

4. La fonction f est dérivable comme quotients de fonctions dérivables le dénominateur ne s'annulant pas et sur \mathbb{R} ,

$$f'(x) = \frac{2e^{2x}(e^{2x}+1)-2e^{2x}(e^{2x}-1)}{(e^{2x}+1)^2} = \frac{4e^{2x}}{(e^{2x}+1)^2} > 0$$
, car quotient de

termes supérieurs à zéro.

Conclusion f est strictement croissante de -1 à 1.

f étant continue sur \mathbb{R} de -1 à 1, s'annule d'après le théorème des valeurs intermédiaires une fois, en α tel que $f(\alpha) = 0$.

Or
$$f(x) = 0 \Leftrightarrow e^{2x} - 1 = 0 \Leftrightarrow e^{2x} = 1 \Leftrightarrow 2x = \ln 1 \Leftrightarrow 2x = 0 \Leftrightarrow x = 0$$
.

Conclusion:

$$f(x) < 0$$
, pour $x < 0$;

$$f(0) = 0$$
;

$$f(x) > 0$$
, pour $x > 0$.

5. (a) f étant continue sur \mathbb{R} de -1 à 1, f prend la valeur $\alpha \in]-1$; 1[d'après le théorème des valeurs intermédiaires une fois , en x_0 tel que

$$f(x_0) = \alpha$$
.

On a donc
$$f(x_0) = \alpha \Leftrightarrow \frac{e^{2x_0} - 1}{e^{2x_0} + 1} = \alpha \Leftrightarrow e^{2x_0} - 1 = \alpha \left(e^{2x_0} + 1\right) \Leftrightarrow e^{2x_0}(1 - \alpha) = 1 + \alpha \Leftrightarrow e^{2x_0} = \frac{1 + \alpha}{1 - \alpha} \operatorname{car} \alpha \neq 1.$$

Donc
$$2x_0 = \ln\left(\frac{1+\alpha}{1-\alpha}\right)$$
 et enfin $x_0 = \frac{1}{2}\ln\left(\frac{1+\alpha}{1-\alpha}\right)$.

(b) Pour
$$\alpha = \frac{1}{2}$$
, on a donc $x_0 = \frac{1}{2} \ln \left(\frac{1 + \frac{1}{2}}{1 - \frac{1}{2}} \right) = \frac{1}{2} \ln \left(\frac{\frac{3}{2}}{\frac{1}{2}} \right) = \frac{1}{2} \ln 3 = \ln \sqrt{3}$.

Partie B - Tangentes à la courbe

1. $M(x; y) \in \Delta_1 \Leftrightarrow y - f(0) = f'(0)(x - 0)$. Or f(0) = 0 et $f'(0) = \frac{4}{4} = 1$. D'où : $M(x; y) \in \Delta_1 \Leftrightarrow y = x$.

2. Soit
$$1 - f^2(t) = 1 - \left(\frac{e^{2t} - 1}{e^{2t} + 1}\right)^2 = \frac{\left(e^{2t} + 1\right)^2 - \left(e^{2t} - 1\right)^2}{\left(e^{2t} + 1\right)^2} = \frac{4e^{2t}}{\left(e^{2t} + 1\right)^2} = f'(t).$$

On a vu que
$$-1 < f(t) < 1$$
, donc $0 \le f(t) < 1$, puis $0 \le [f(t)]^2 < 1$, $-1 < -[f(t)]^2 \le 0$ et enfin $0 < 1 - [f(t)]^2 \le 1$.

Finalement $0 < f'(t) \le 1$.

La dérivée est supérieure à zéro (on le savait fonction strictement croissante sur \mathbb{R}), mais est majorée par 1 valeur atteinte comme on l'a vu en 0.

3. On vient de voir que $0 < f'(t) \le 1$, donc par encadrement d'intégrales de fonctions positives sur l'intervalle [0; x], avec $x \ge 0$,

$$\int_0^x 0 \, dt < \int_0^x f'(t) \, dt \le \int_0^x 1 \, dt, \text{ soit } : 0 < \int_0^x f'(t) \, dt \le x.$$

Mais on sait que la fonction f est l'intégrale de sa dérivée sur l'intervalle $[0\;;\;x]$ qui s'annule en x=0, donc $\int_0^x f'(t)\,\mathrm{d}t=f(x)$ et l'encadrement précédent devient $0< f(x)\leqslant x$.

On en déduit que $f(x) - x \leq 0$ ce qui signifie que Γ est au dessous de Δ_1 sauf pour x = 0 où les deux courbes ont un point commun.

4. On a $f(x_A) = \frac{1}{2}$

On sait que $f'(x_A) = 1 - (f(x_A))^2 = 1 - \frac{1}{4} = \frac{3}{4}$ $M(x; y) \in \Delta_2 \Leftrightarrow y - f(x_A) = f'(\frac{1}{2})(x - x_A).$

Or on a démontré à la question 5. b. que la solution de l'équation $f(x) = \frac{1}{2}$ est le nombre $x_0 = \frac{1}{2} \ln 3$.

L'équation est donc :

$$M(x ; y) \in \Delta_2 \Leftrightarrow y - \frac{1}{2} = \frac{3}{4} \left(x - \frac{1}{2} \ln 3 \right) \Leftrightarrow y = \frac{4ex}{(e+1)^2} + \frac{e-1}{e+1} - \frac{2e}{(e+1)^2}.$$

Finalement $M(x; y) \in \Delta_2 \Leftrightarrow y = \frac{3}{4}x + \frac{1}{2} - \frac{3}{8}\ln 3$.

5. Il faut résoudre l'équation $f'(x) = \frac{1}{2} \Leftrightarrow \frac{4e^{2x}}{(e^{2x} + 1)^2} = \frac{1}{2} \Leftrightarrow 8e^{2x} = (e^{2x} + 1)^2 \Leftrightarrow 8e^{2x} = e^{4x} + 2e^{2x} + 1 \Leftrightarrow e^{4x} - 6e^{2x} + 1 = 0.$

Posons $X = e^{2x} > 0$; l'équation devient $X^2 - 6X + 1 = 0$

On a $\delta = 36 - 4 = 32 = (4\sqrt{2})^2 > 0$; il y a deux solutions :

 $X_1 = e^{2x_1} = \frac{6+4\sqrt{2}}{2} = 3+2\sqrt{2}$ et $X_2 = 3-2\sqrt{2} = e^{2x_2}$ qui n'a pas de solution.

$$e^{2x_1} = 3 + 2\sqrt{2} \Rightarrow 2x_1 = \ln(3 + 2\sqrt{2}) \Leftrightarrow x_1 = \frac{1}{2}\ln(3 + 2\sqrt{2}).$$

Or
$$3 + 2\sqrt{2} = 2 + 2\sqrt{2} + 1 = (\sqrt{2} + 1)^2$$
, donc finalement :

$$x_1 = \frac{1}{2} \ln (1 + \sqrt{2})^2 = \ln (1 + \sqrt{2}).$$

Pour calculer l'image de ce nombre on utilise la relation : 1-f(t)]² = f'(t).

$$f\left(\ln\left(1+\sqrt{2}\right)\right)^2 = 1 - f'\left(\ln\left(1+\sqrt{2}\right)\right) = 1 - \frac{1}{2} = \frac{1}{2}; \text{ donc } f\left(\ln\left(1+\sqrt{2}\right)\right) = \frac{1}{\sqrt{2}}.$$

Partie C - Calcul d'intégrales

1. En multipliant chaque terme de f(x) par e^{-x} , on obtient $f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$.

En posant $u(x) = e^x + e^{-x}$, on a $u'(x) = e^x - e^{-x}$. Donc $f(x) = \frac{u'(x)}{u(x)}$. On reconnaît la dérivée de $\ln |u(x)| = \ln u(x)$, car u(x) est la somme de deux termes supérieurs à zéro.

Conclusion : $\ln u(x)$ est une primitive de f(x).

2. On a vu que pour x > 0, donc en particulier sur [0; 1], $f(x) \ge 0$, donc l'aire de la surface comprise entre Γ et les droites d'équations x = 0 et x = 1 est égale (en unités d'aire) à $\int_0^1 f(x) dx$.

On a vu que pour x > 0 la courbe est sous la droite d'équation y = x, donc l'aire en unité d'aire de la surface comprise entre Γ , la droite d'équation y = x et les droites d'équations x = 0 et x = 1 est égale à :

$$\int_0^1 x \, dx - \int_0^1 f(x) \, dx =$$

$$\int_0^1 [x - f(x)] \, dx = \left[\frac{x^2}{2} - \ln \left(e^x + e^{-x} \right) \right]_0^1 =$$

$$\frac{1^2}{2} - \ln \left(e^1 + e^{-1} \right) - \frac{0^2}{2} + \ln \left(e^0 + e^{-0} \right) = \frac{1}{2} - \ln \left(e + e^{-1} \right) + \ln 2 = \frac{1}{2} + \ln 2 - \ln \left(e + e^{-1} \right).$$

L'unité d'aire étant égale à 16 cm^2 , l'aire demandée est égale à $8 + 16 \ln 2 - 16 \ln (e + e^{-1})$.

Voir la surface hachurée plus haut.

3. On a vu que pour tout réel x, $[f(x)]^2 = 1 - f'(x)$, donc :

$$\int_0^1 [f(x)]^2 dx = \int_0^1 (1 - f'(x)) dx = [x - f(x)]_0^1 = 1 - f(1) - 0 + f(0) = 1 - f(1) = 1 - \frac{e^2 - 1}{e^2 + 1} = \frac{e^2 + 1 - e^2 + 1}{e^2 + 1} = \frac{2}{e^2 + 1}$$

4. Toujours en utilisant la relation entre f et f':

$$\int_0^1 x \left(1 - [f(x)]^2 \right) dx = \int_0^1 x f'(x) dx.$$

En posant u(x) = x et v'(x) = f'(x), on a :

u'(x) = 1 et v(x) = f(x). Toutes ces fonctions sont continues car dérivables sur [0; 1]; on peut donc intégrer par parties :

$$\int_0^1 x f'(x) dx = [x f(x)]_0^1 - \int_0^1 f(x) dx, \text{ soit en utilisant le résultant de la question}$$

C. 1.:

$$\int_0^1 x f'(x) dx = [x f(x)]_0^1 - \left[\ln \left(e^x + e^{-x} \right) \right]_0^1 = \frac{e - e^{-1}}{e + e^{-1}} - \ln \left(e + e^{-1} \right) - 0 + \ln 2 = \frac{e - e^{-1}}{e + e^{-1}} - \ln \left(e + e^{-1} \right) - \ln \frac{1}{2} = \frac{e - \frac{1}{e}}{e + \frac{1}{e}} - \ln \left(e + \frac{1}{e} \right) - \ln \frac{1}{2} = \frac{e^2 - 1}{e^2 + 1} - \ln \left(\frac{e^2 + 1}{2e} \right).$$

• Il suit : $\int_0^1 x[f(x)]^2 dx =$

$$\int_0^1 x \, dx - \int_0^1 x [1 - f(x)^2] \, dx = \left[\frac{x^2}{2} \right]_0^1 - \frac{e^2 - 1}{e^2 + 1} - \ln\left(\frac{e^2 + 1}{2e}\right) = \frac{1}{2} - \frac{e^2 - 1}{e^2 + 1} - \ln\left(\frac{e^2 + 1}{2e}\right).$$