Chapitre 17

Sommes

17.1 Symbole de sommations

Définition 17.1 (Intervalle d'entiers)

Soient n et p deux entiers avec $n \leq p$.

On désigne par [n; p] l'ensemble des entiers compris entre n et p.

Remarque:

- 1. Il y a n nombres entiers dans l'ensemble [1; n].
- 2. $\llbracket 0; n \rrbracket = \{0\} \cup \llbracket 1; n \rrbracket$, donc il y a n+1 nombres entiers dans l'ensemble $\llbracket 0; n \rrbracket$.
- 3. $\llbracket 1; n+1 \rrbracket = \llbracket 1; n \rrbracket \cup \{n+1\}$, donc il y a n+1 nombres entiers dans l'ensemble $\llbracket 0; n \rrbracket$.
- 4. Plus généralement, il y a p-n+1 entiers dans l'ensemble [n; p].

Définition 17.2 (Somme)

1. Soient $a_0, a_1, \dots, a_n, (n+1)$ nombres réels. La notation symbolique

$$\sum_{k=0}^{n} a_k$$

désigne la somme

$$a_0 + a_1 + \dots + a_n$$

et elle se prononce "somme de k = 0 à n des a_k ".

2. Plus généralement, si a_n , a_{n+1} , \cdots , a_p sont des nombres réels, avec $n \leq p$. La notation symbolique $\sum_{k=n}^{p} a_k$ désigne la somme $a_n + a_{n+1} + \cdots + a_p$ et elle se prononce "somme de k = n à p des a_k ".

On pourra utiliser l'écriture avec le symbole somme ou avec les pointillés.

Exemple:

- 1. $\ln(2) + \ln(3) + ... + \ln(12)$ peut s'écrire aussi $\sum_{k=2}^{12} \ln(k)$.
- 2. $5^2 + 6^2 + 7^2 + 8^2 + \dots + 25^2$ peut s'écrire $\sum_{k=5}^{25} k^2$.

3. Question : que représente la notation symbolique $\sum_{k=1}^{29} \frac{1}{7k^2}$?

Réponse:
$$\frac{1}{7 \times 1^2} + \frac{1}{7 \times 2^2} + \frac{1}{7 \times 3^2} + ... + \frac{1}{7 \times 29^2}$$
.

Remarque:

$$\bullet \sum_{k=0}^{0} a_k = a_0,$$

•
$$\sum_{k=1}^{n} 1 = n$$
, $\sum_{k=0}^{n} 1 = n+1$, $\sum_{k=0}^{n+1} 1 = n+2$,

$$\bullet \sum_{k=1}^{n} 2 = 2n.$$

Proposition 17.1 (Propriétés de calcul)

Soient n, p deux entiers naturels avec $n \leq p$ et $a_n, a_{n+1}, ..., a_p$ et $b_n, b_{n+1}, ..., b_p$ des nombres réels. Alors on a

1.
$$\sum_{k=n}^{p} (a_k + b_k) = \sum_{k=n}^{p} a_k + \sum_{k=n}^{p} b_k$$

2.
$$\sum_{k=n}^{p} (a_k - b_k) = \sum_{k=n}^{p} a_k - \sum_{k=n}^{p} b_k$$

3. Pour tout nombre réel
$$\lambda$$
, $\sum_{k=n}^{p} \lambda a_k = \lambda \sum_{k=n}^{p} a_k$

4. Relation de Chasles.

Pour tout entier positif $l \in [n; p-1]$, on a

$$\sum_{k=n}^{p} a_k = \sum_{k=n}^{l} a_k + \sum_{k=l+1}^{p} a_k$$

Preuve:

On ne prouvera que la première égalité, les autres se prouvant de la même façon.

$$\sum_{k=n}^{p} (a_k + b_k) = (a_n + b_n) + (a_{n+1} + b_{n+1}) + ...(a_p + b_p)$$

$$= (a_n + a_{n+1} + ...a_p) + (b_n + b_{n+1} + ...b_p)$$

$$= \sum_{k=n}^{p} a_k + \sum_{k=n}^{p} b_k.$$

17.2 Calcul de sommes

Proposition 17.2 (Sommes remarquables)

Soit $n \in \mathbb{N}^*$. Alors on a les égalités suivantes :

1.
$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}.$$

2.
$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$$

3.
$$\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}.$$

4. pour tout nombre réel q différent de 1, on a

$$\sum_{k=0}^{n} q^k = \frac{1 - q^{n+1}}{1 - q}$$

Point Méthode:

1. Calculons $\sum_{k=1}^{10} (5k^2 + 10k + 5)$.

$$\begin{array}{lcl} \sum\limits_{k=1}^{10} \left(5k^2 + 10k + 5\right) & = & 5\sum\limits_{k=1}^{10} k^2 + 10\sum\limits_{k=1}^{10} k + \sum\limits_{k=1}^{10} 5\\ \sum\limits_{k=1}^{10} \left(5k^2 + 10k + 5\right) & = & 5\frac{(10)(10+1)(2\times10+1)}{6} + 10\frac{10(10+1)}{2} + 5\times10\\ \sum\limits_{k=1}^{10} \left(5k^2 + 10k + 5\right) & = & 1425 \end{array}$$

2. Soit $n \in \mathbb{N}$, calculons $\sum_{k=0}^{n} \left(\frac{2^k}{3^{2k+1}}\right)$.

$$\sum_{k=0}^{n} \left(\frac{2^{k}}{3^{2k+1}}\right) = \sum_{k=0}^{n} \left(\frac{2}{3^{2}}\right)^{k} \times \left(\frac{1}{3}\right)
\sum_{k=0}^{n} \left(\frac{2^{k}}{3^{2k+1}}\right) = \left(\frac{1}{3}\right) \times \sum_{k=0}^{n} \left(\frac{2}{9}\right)^{k}
\sum_{k=0}^{n} \left(\frac{2^{k}}{3^{2k+1}}\right) = \left(\frac{1}{3}\right) \times \frac{1 - \left(\frac{2}{9}\right)^{n+1}}{1 - \frac{2}{9}}
\sum_{k=0}^{n} \left(\frac{2^{k}}{3^{2k+1}}\right) = \left(\frac{3}{7}\right) \times \left(1 - \left(\frac{2}{9}\right)^{n+1}\right)$$

3. Soit $n \in \mathbb{N}^*$, calculons $\sum_{k=n}^{2n} k^3$.

$$\sum_{k=n}^{2n} k^3 = \sum_{k=1}^{2n} k^3 - \sum_{k=1}^{n-1} k^3$$

$$\sum_{k=n}^{2n} k^3 = \frac{(2n)^2 ((2n) + 1)^2}{4} - \frac{(n-1)^2 ((n-1) + 1)^2}{4}$$

$$\sum_{k=n}^{2n} k^3 = \frac{4n^2 (2n+1)^2}{4} - \frac{(n-1)^2 n^2}{4}$$

$$\sum_{k=n}^{2n} k^3 = n^2 \left((2n+1)^2 - \frac{1}{4} (n-1)^2 \right)$$

$$\sum_{k=n}^{2n} k^3 = n^2 \left(\frac{15}{4} n^2 + \frac{9}{2} n + \frac{3}{4} \right)$$

<u>Remarque</u>: On remarque que $\sum_{k=l}^{n} a_k = \sum_{j=l}^{n} a_j = \sum_{\alpha=l}^{n} a_{\alpha}$. "Les entiers" k, j, l sont des indices de sommation autrement dit ce sont des variables muettes que l'on peut interchanger.

Proposition 17.3 (Changement d'indice)

Soient l, n, p des entiers naturels avec $n \leq p$ et $a_{n+l}, a_{n+l+1}, ..., a_{p+l}$ des nombres réels.

Alors, en posant
$$j = k + l$$
, on a $\sum_{k=n}^{p} a_{k+l} = \sum_{j=n+l}^{p+l} a_j$ (on dit que l'on a fait le changement d'indice $j = k + l$).

Point Méthode: Simplifions $\sum_{k=3}^{10} \frac{k^2 - k - 2}{k - 2}$. Posons j = k - 2 alors k = j + 2.

Quand k = 3, alors j = 1

Quand k = 10 alors j = 8.

On obtient

$$\sum_{k=3}^{10} \frac{k^2 - k - 2}{k - 2} = \sum_{j=1}^{8} \frac{(j+2)^2 - (j+2) - 2}{(j+2) - 2}$$

$$\sum_{k=3}^{10} \frac{k^2 - k - 2}{k - 2} = \sum_{j=1}^{8} \frac{j^2 + 3j}{j}$$

$$\sum_{k=3}^{10} \frac{k^2 - k - 2}{k - 2} = \sum_{j=1}^{8} (j+3)$$

Point Méthode: Montrons par récurrence que $\forall n \in \mathbb{N}^*, \sum_{k=1}^n k = \frac{n(n+1)}{2}$.

Initialisation: Montrons que cette égalité est vraie au rang n = 1.

Le membre de gauche de l'égalité est égal à 1 et le membre de droite est égal à $\frac{1\times 2}{2}=1.$

Donc l'égalité est vraie au rang 1.

Hérédité : Supposons qu'à un rang n, on a $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$.

Montrons alors qu'au rang n + 1, on a $\sum_{k=1}^{n+1} k = \frac{(n+1)((n+1)+1)}{2}$.

$$1 + .. + n + (n+1) = \frac{n(n+1)}{2} + (n+1) = (n+1)(\frac{n}{2} + 1) = \frac{(n+1)(n+2)}{2}$$

Par conséquent $1+2+..+n+(n+1)=\frac{(n+1)((n+1)+1)}{2}$. L'hérédité est démontrée.

Conclusion Finalement, par le principe de récurrence, $\forall n \in \mathbb{N}^*, 1+2+..+n = \frac{n(n+1)}{2}$.

Fiche 24 - Sommes

Exercice 1 (Symbole de sommation)

Ecrire sans le symbole \sum les expressions cidessous :

1.
$$\sum_{k=1}^{5} k^2$$

2.
$$\sum_{j=3}^{8} \frac{j}{3^j}$$

Ecrire les sommes suivantes avec le symbole \sum

1.
$$2^5 + 3^5 + 4^5 + ... + n^5$$
 avec $n \in \mathbb{N}, n \ge 2$.

2.
$$\frac{a^2}{2} + \frac{a^4}{4} + \frac{a^6}{6} + \dots + \frac{a^{2n}}{2n}$$
 avec $a \in \mathbb{R}$.

Exercice 2 (Symbole de sommation)

Soit $n \in \mathbb{N}^*$, calculer les sommes suivantes :

1.
$$A_n = \sum_{k=0}^{n} (5k+2)$$

2.
$$B_n = \sum_{k=0}^{n} (4k^2 - 4k + 2)$$

3.
$$C_n = \sum_{k=0}^{n} (6k^2 - 2k + 1)$$

4.
$$D_n = \sum_{k=0}^{n} (3k^3 - 5k + 1)$$

5.
$$E_n = \sum_{k=0}^{n} \frac{2^k}{3^{k+1}}$$

6.
$$F_n = \sum_{k=2}^n \left(\frac{1}{3}\right)^k$$

7.
$$G_n = \sum_{k=1}^{n} (2^k + 3^{2k})$$

8. Soit
$$p \in \mathbb{N}^*$$
, $H_p = \sum_{k=0}^{p} (k^3 - 6 \times 2^k)$

9.
$$I_n = \sum_{k=0}^n \left(\frac{2^{k+3}}{3^{k+1}}\right)$$

10. Soit
$$p \in \mathbb{N}^*$$
, $J_p = \sum_{k=2}^{3p} (2k+1)$

11.
$$K_n = \sum_{k=n}^{2n} (k^2)$$
 avec $n \ge 2$.

12. Soit
$$p \in \mathbb{N}$$
, $p \ge 3$, $L_p = \sum_{k=3}^{p} (3k^2 + 2k + 2)$

13. Soit
$$n \in \mathbb{N}^*$$
, $M_n = \sum_{k=2}^{2n+1} (k^3 + 3^{k+1})$

14. Soit
$$p \in \mathbb{N}^*$$
, $N_p = \sum_{k=n}^{2p} (2k^2 + k^3)$

15. Soit
$$p \in \mathbb{N}$$
, $O_p = \sum_{k=p}^{p+2} (2)$

Exercice 3 (Principe des dominos)

1. Déterminer deux réels a et b tels que

$$\forall k \in \mathbb{N}^*, \ \frac{1}{k(k+1)} = \frac{a}{k} + \frac{b}{k+1}$$

2. En déduire $\sum_{k=1}^{100} \frac{1}{k(k+1)}$

Exercice 4 (Principe des dominos)

On pose $u_0 = 0$ et, $\forall n \in \mathbb{N}$,

$$u_{n+1} = u_n + n$$

$$v_n = u_{n+1} - u_n$$

1. Exprimer, $\forall n \in \mathbb{N}^*$,

$$\sum_{k=0}^{n-1} v_k$$

en fonction de u_n .

2. Exprimer, $\forall n \in \mathbb{N}^*$, u_n en fonction de n.

Exercice 5 (Récurrence)

Montrer par récurrence les égalités suivantes :

1. $\forall n \in \mathbb{N}^*$,

$$\sum_{k=1}^{n} (2k-1)(2k+1) = \frac{n(4n^2 + 6n - 1)}{3}$$

 $2. \ \forall n \in \mathbb{N}^*,$

$$\sum_{k=0}^{n-1} (2k+1) = n^2$$

3. Soit $a \neq 1, \forall n \in \mathbb{N}$,

$$\sum_{k=0}^{n} a^k = \frac{1 - a^{n+1}}{1 - a}$$

 $4. \ \forall n \in \mathbb{N}, \ n \geqslant 3,$

$$\sum_{k=3}^{n} 4k(k-1)(k-2) =$$

$$n(n+1)(n-1)(n-2)$$

Programme de Colle 21

Révisions : Dénombrement

- Combinaison, formules, triangle de Pascal, binôme de Newton,
- p-listes, p-listes d'éléments disctincts, permutation.

Sommes

- Symbole de sommation : propriétés de calculs,
- sommes remarquables $(\sum k, \sum k^2, \sum k^3, \sum q^k)$
- Méthode : changement de variable dans une somme

Révisions: suites numériques

- Suites géométriques, arithmétiques et leurs sommes de termes consécutifs.
- Suites arithmético-géométriques.
- Suites récurrentes linéaires d'ordre 2

Exercices possibles Exercices 1 à 5 semaine 20

Exercice 1

Calculer les sommes suivantes :

1.

$$A_n = \sum_{k=0}^{n} (2k+1)$$

2.

$$B_n = \sum_{k=0}^{n+1} (6k^2 + 4k + 1)$$

3.

$$C_n = \sum_{j=3}^{n} (3j^2 + 1)$$

4.

$$D_n = \sum_{i=0}^{2n} 3 \times 4^{i+1}$$

5.

$$E_n = \sum_{j=0}^{n} \frac{5 \times 2^j}{3^{j+1}}$$

6.

$$F_r = \sum_{k=0}^{3r} \frac{2^{2k}}{3^{4k}}$$

7.

$$G_k = \sum_{s=0}^k \frac{2^{3s-1}}{3^{2s+2}}$$

Exercice 2

1. Démontrer par récurrence que $\forall n \in N$,

$$\sum_{k=0}^{n} (4k-1) = 2n^2 + n - 1$$

2. Retrouver ce résultat en utilisant les formules usuelles.

Exercice 3

1. Démontrer par récurrence que $\forall n \in \mathbb{N}^*$.

$$\sum_{k=0}^{n} (6k+2) = 3n^2 + 5n + 2$$

2. Retrouver ce résultat en utilisant les formules usuelles.

Exercice 4

1. Démontrer par récurrence que $\forall n \in N^*$,

$$\sum_{k=1}^{n} k(k+1)(k+2) = \frac{n(n+1)(n+2)(n+3)}{4}$$