Chapitre 3

Suites Numériques

3.1 Définition

Définition 3.1 (Suites)

On appelle suite réelle toute application d'une partie I de \mathbb{N} dans \mathbb{R} : à chaque entier naturel n de I on associe un nombre réel noté u_n , appelé terme de rang n (ou d'indice n) de la suite $u = (u_n)_{n \in I}$.

L'ensemble des suites réelles définies sur \mathbb{N} est noté $\mathcal{F}(\mathbb{N},\mathbb{R})$ ou $\mathbb{R}^{\mathbb{N}}$.

Modes de génération d'une suite :

1. **Définition explicite** du terme de rang n du type

$$u_n = f(n)$$

où f est une fonction définie sur un intervalle du type $[a; +\infty[$ (avec a réel). Par exemple, on se donne $u_n = -5 + 7n$ pour $n \ge 0$ ($u_n = f(n)$ avec f définie sur \mathbb{R} par f(x) = -5 + 7x.)

2. **Définition "par récurrence"** du type

$$\begin{cases} u_0 = a \in \mathbb{R} \\ u_{n+1} = f(u_n) \end{cases}$$

où f est une fonction définie sur un intervalle I telle que $f(I) \subset I$. Cette relation de récurrence permet de calculer un terme de la suite **à partir** du terme précédent. Par exemple, on se donne

$$\begin{cases} u_0 = 1 \\ u_{n+1} = -2u_n + 1 \end{cases}$$

On a ainsi

$$u_1 = -2u_0 + 1 = -2 \times 1 + 1 = -1,$$

 $u_2 = -2u_1 + 1 = -2 \times (-1) + 1 = 3,$
 $u_3 = -2u_2 + 1 = -2 \times 3 + 1 = -5,$ etc

et permet ainsi d'avoir tous les termes de la suite "de proche en proche". L'inconvénient majeur est que des termes "éloignés" du début de la suite sont difficiles d'accès : pour calculer u_{100} il faut, a priori, calculer tous les termes précédents, jusqu'à u_{99} !!

3.2 Sens de variation d'une suite

Définition 3.2 (Sens de variation d'une suite)

Dire qu'une suite $(u_n)_{n\in\mathbb{N}}$ est :

- strictement croissante à partir du rang p signifie que, $\forall n \geq p$, on a $u_{n+1} > u_n$
- croissante à partir du rang p signifie que, $\forall n \geq p$, on a $u_{n+1} \geq u_n$
- strictement décroissante à partir du rang p signifie que, $\forall n \geqslant p$, on a $u_{n+1} < u_n$
- décroissante à partir du rang p signifie que, $\forall n \geqslant p$, on a $u_{n+1} \leq u_n$
- stationnaire à partir du rang p signifie que $\forall n \geq p$, on a $u_{n+1} = u_n$
- monotone à partir du rang p signifie que la suite est soit croissante, soit décroissante à partir du rang p.

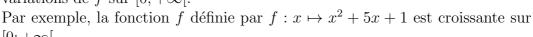
Remarque: Toutes les suites ne sont pas monotones: par exemple, la suite u définie pour tout $n \in \mathbb{N}$ par $u_n = (-1)^n n$ ne l'est pas : $u_0 = 0$, $u_1 = -1$, $u_2 = 2$, $u_3 = -3$, $u_4 = 4$, etc.

Point Méthode : Pour étudier le sens de variation d'une suite , plusieurs méthodes:

- 1. On étudie généralement le signe de la différence $u_{n+1} u_n, \forall n \in \mathbb{N}$. Par exemple, prenons la suite $(u_n)_{n\in\mathbb{N}}$ est définie par $u_n=n^2+2$, alors on a $u_{n+1} = (n+1)^2 + 2 =$. Ainsi pour tout $n \in \mathbb{N}$, on a $u_{n+1} - u_n = 2n + 1$. On a donc $u_{n+1} - u_n > 0$, et donc que $u_{n+1} > u_n$ pour tout n: la suite est donc strictement croissante.
- 2. Si tous les termes de la suite u sont strictement positifs, on peut comparer le quotient $\frac{u_{n+1}}{u_n}$ avec 1. Par exemple, pour $(u_n)_{n\in\mathbb{N}}$ définie par $u_n=2\times 5^n$, on a $u_n>0$ pour tout

entier naturel n et $u_{n+1} = 2 \times 5^{n+1}$. Ainsi pour tout n on a $\frac{u_{n+1}}{u_n} = 5$. On voit que $\frac{u_{n+1}}{u_n} > 1$, et donc que $u_{n+1} > u_n$ pour tout n: la suite est donc strictement croissante.

3. S'il existe une fonction f telle que pour tout n on a $u_n = f(n)$, étudier les variations de f sur $[0; +\infty[$.



Considérons la suite $(u_n)_{n\in\mathbb{N}}$ de terme général $u_n=n^2+5n+1$.

Soit $n \in \mathbb{N}$, on a $n \leq n + 1$.

Or f est croissante sur $[0; +\infty[$.

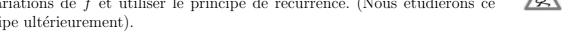
Donc $f(n) \leq f(n+1)$.

Or $f(n) = u_n$ et $f(n+1) = u_{n+1}$.

On obtient $u_n \leq u_{n+1}$.

Finalement la suite $(u_n)_{n\in\mathbb{N}}$ est croissante.

4. S'il existe une fonction f telle que pour tout n on a $u_{n+1} = f(u_n)$, étudier les variations de f et utiliser le principe de récurrence. (Nous étudierons ce principe ultérieurement).



3.3 Suite majorée, minorée ou bornée

Définition 3.3 (Suite majorée, minorée ou bornée)

Soit (u_n) une suite numérique. Dire que

- la suite est majorée signifie qu'il existe un réel M tel que pour tout n, on ait $u_n \leq M$.
- la suite est minorée signifie qu'il existe un réel m tel que pour tout n, on ait $m \leq u_n$.
- la suite est bornée signifie qu'il existe deux réels m et M tels que pour tout n, on ait $m \le u_n \le M$.

<u>Remarque</u>: Une suite majorée (resp. minorée) admet une infinité de majorants (resp. minorants).

Exemple: La suite $(u_n)_{n\in\mathbb{N}^*}$ définie par $u_n=\frac{1}{n}$ est bornée par 0 et 1. Remarquons que 0, -1 et -3 sont des minorants et 1, 2 et 12 sont des majorants de la suite.

3.4 Suites arithmétiques

Définition 3.4 (Suite arithmétique)

Dire qu'une suite (u_n) est arithmétique signifie qu'il existe un réel r tel que,

$$\forall n \in \mathbb{N}, u_{n+1} = u_n + r$$

On appelle r la raison de la suite.

 $\underline{Remarque}$: On passe d'un terme de la suite au suivant en ajoutant toujours le même nombre r.

<u>**Exemple**</u>: Prenons par exemple la suite u arithmétique, de premier terme $u_0 = 5$ et de raison r = -2.

La définition de u par récurrence est

$$\begin{cases} u_0 = 5 \\ \forall n \in \mathbb{N}, \ u_{n+1} = u_n - 2 \end{cases}$$

Les premiers termes de cette suite sont $u_1 = 3$, $u_2 = 1$, $u_3 = -1$, $u_4 = -3$, $u_5 = -5$, $u_6 = -7$.

Point Méthode: Reconnaître une suite arithmétique

On calcule $u_{n+1} - u_n$ et on doit trouver un nombre constant qui sera la raison.

Par exemple, soit u définie par $\forall n \in \mathbb{N}$, $u_n = 5 + 3n$.

On a, pour tout entier naturel n, $u_{n+1} - u_n = 3$

Donc la suite u est arithmétique, et sa raison est r=3.

Proposition 3.1 (Terme général d'une suite arithmétique)

Soit une suite arithmétique u de raison r

- $\forall n \in \mathbb{N}, u_n = u_0 + nr$
- $\forall n \in \mathbb{N}, \forall p \in \mathbb{N}, u_n = u_p + (n-p)r$

Proposition 3.2 (Somme de termes consécutifs d'une suite arithmétique)

Soit une suite arithmétique u de raison r, $\forall n \in \mathbb{N}$, $\forall p \in \mathbb{N}$ avec $p \geq n$,

$$u_n + u_{n+1} + \dots + u_p = \frac{nb \ de \ termes \times (1er \ terme + dernier \ terme)}{2} = \frac{(p-n+1)(u_p + u_n)}{2}$$

En particulier

$$\forall n \in \mathbb{N}, 1+2+\cdots+n = \frac{n(n+1)}{2}$$

Proposition 3.3 (Sens de variation d'une suite arithmétique)

Soit u une suite arithmétique de raison r.

- Si $r \ge 0$ alors la suite u est croissante.
- Si $r \leq 0$, alors la suite u est décroissante.
- Si r = 0, alors la suite u est constante.

Ce résultat découle naturellement de $u_{n+1} - u_n = r$.

3.5 Suites géométriques

Définition 3.5 (Suite géométrique)

Dire qu'une suite (u_n) est géométrique signifie qu'il existe un réel q tel que, pour tout $n \in \mathbb{N}$,

$$u_{n+1} = q \times u_n$$

On appelle q la raison de la suite.

 $\underline{Remarque}$: On passe d'un terme de la suite au suivant en multipliant toujours par le même nombre q.

<u>**Exemple**</u>: Prenons par exemple la suite u géométrique, de premier terme $u_0 = 3$ et de raison q = -2.

La définition de u par récurrence est

$$\begin{cases} u_0 = 3 \\ u_{n+1} = -2 \times u_n \end{cases}$$

Les premiers termes de cette suite sont $u_1 = -6$, $u_2 = 12$, $u_3 = -24$, $u_4 = 48$, $u_5 = -96$, $u_6 = 192$.

1

Point Méthode : Reconnaître une suite géométrique

On calcule u_{n+1} et on essaie de faire apparaître u_n multiplié par une constante. Ce nombre constant sera la raison.

Par exemple, soit u définie par $u_n = 2 \times 3^n$.

On a, pour tout entier naturel n, $u_{n+1} = 3 \times u_n$

Donc la suite u est géométrique, et sa raison est q=3.

Proposition 3.4 (Terme général d'une suite géométrique)

Etant donné une suite géométrique de raison q

- $\forall n \in \mathbb{N}, u_n = u_0 \times q^n$
- $\forall n \in \mathbb{N}, \forall p \in \mathbb{N}, u_n = u_p \times q^{n-p}$

Proposition 3.5 (Somme de termes consécutifs d'une suite géométrique) Etant donné une suite géométrique u de raison $q \neq 1$, $\forall n \in \mathbb{N}$, $\forall p \in \mathbb{N}$ avec $p \geq n$,

$$u_n + u_{n+1} + \dots + u_p = \text{premier terme} \times \frac{1 - \text{raison}^{\text{nombre de termes}}}{1 - \text{raison}} = u_n \frac{1 - q^{p-n+1}}{1 - q}$$

En particulier

$$\forall q \neq 1, \forall n \in \mathbb{N}, 1 + q + q^2 + \dots + q^n = \frac{1 - q^{n+1}}{1 - q}$$

Proposition 3.6 (Sens de variation d'une suite géométrique)

Soit u une suite géométrique de premier terme $u_0 > 0$ et de raison q.

- Si 0 < q < 1 alors la suite u est décroissante.
- Si q = 1 alors la suite u est stationnaire, ou constante.
- Si q > 1 alors la suite u est croissante.
- Si q < 0 alors la suite u n'est ni croissante, ni décroissante (ses termes sont alternativement positifs et négatifs).

3.6 Suites arithmético-géométriques

Définition 3.6 (Suites arithmético-géométriques)

Dire que la suite u est arithmético-géométrique signifie qu'il existe un nombre réel $a \in \mathbb{R} - \{0,1\}$ et $b \in \mathbb{R} - \{0\}$ tels que $\forall n \in \mathbb{N}$,

$$u_{n+1} = a \times u_n + b$$

Proposition 3.7 (Obtention du terme général)

Soit u une suite arithmético-géométrique définie par :

$$\begin{cases} u_0 \\ \forall n \in \mathbb{N}, \ u_{n+1} = a \times u_n + b \end{cases}$$

avec $a \in \mathbb{R} - \{0, 1\}$ et $b \in \mathbb{R} - \{0\}$.

Il existe un nombre réel α tel que la suite v définie par $\forall n \in \mathbb{N}$, $v_n = u_n - \alpha$ soit une suite géométrique de raison a. Le nombre α est l'unique solution de l'équation x = ax + b, on l'appelle le point fixe.

<u>Point Méthode</u> : Considérons la suite u définie par

$$\begin{cases} u_0 = 4 \\ \forall n \in \mathbb{N}, \ u_{n+1} = 2 \times u_n + 3 \end{cases}$$

La suite u est une suite arithmético-géométrique.

Résolvons dans $\mathbb R$ l'équation x=2x+3

$$\begin{array}{rcl}
-x & = & 3 \\
x & = & -3
\end{array}$$

Posons v la suite définie $\forall n \in \mathbb{N}, v_n = u_n - (-3) = u_n + 3$.

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} + 3$$

$$v_{n+1} = 2 \times u_n + 3 + 3$$

$$v_{n+1} = 2 \times (u_n + 3)$$

$$v_{n+1} = 2v_n$$

v est une suite géométrique de raison 2 de premier terme $v_0 = u_0 - (-3) = 7$

$$\forall n \in \mathbb{N}, \ v_n = 7 \times 2^n$$

D'autre part $\forall n \in \mathbb{N}, u_n = v_n - 3$ Par conséquent,

$$\forall n \in \mathbb{N}, \ u_n = 7 \times 2^n - 3$$

3.7 Suites récurrentes linéaires d'ordre 2

Définition 3.7 (Suites récurrentes linéaires d'ordre 2)

Dire que la suite u est récurrente linéaire d'ordre 2 signifie qu'il existe un nombre réel $a \in \mathbb{R}^*$ et $b \in \mathbb{R}^*$ tels que

$$\forall n \in \mathbb{N}, \ u_{n+2} = a \times u_{n+1} + b \times u_n$$

<u>Remarque</u>: Pour définir une suite récurrente linéaire d'ordre 2, il faut compléter la formule de récurrence par la donnée des deux premiers termes de la suite.

Proposition 3.8 (Obtention du terme général)

Soit u une suite récurrente linéaire d'ordre 2 définie par :

$$\begin{cases} u_0 \\ u_1 \\ \forall n \in \mathbb{N}, \ u_{n+2} = a \times u_{n+1} + b \times u_n \end{cases}$$

avec $a \in \mathbb{R}^*$ et $b \in \mathbb{R}^*$.

Résolvons dans \mathbb{R} l'équation caractéristique $x^2 - ax - b = 0$ et posons Δ le discriminant.

 Si Δ > 0 alors l'équation admet deux solutions q₁ et q₂ et il existe deux réels λ et μ tels que

$$\forall n \in \mathbb{N}, \ u_n = \lambda \times q_1^n + \mu \times q_2^n$$

• Si $\Delta = 0$ alors l'équation admet une solution q et il existe deux réels λ et μ tels que

$$\forall n \in \mathbb{N}, \ u_n = (\lambda + \mu \times n) \ q^n$$

Point Méthode : Considérons la suite u définie par

$$\begin{cases} u_0 = 6 \\ u_1 = 5 \\ \forall n \in \mathbb{N}, \ u_{n+2} = 3u_{n+1} - 2u_n \end{cases}$$

La suite u est une suite récurrente linéaire d'ordre 2.

Résolvons dans $\mathbb R$ l'équation $x^2-3x+2=0$ et posons $\Delta=9-4\times 1\times 2=1>0$ Donc cette équation admet deux solutions :

$$q_1 = \frac{3 - \sqrt{1}}{2} = 1$$
 $q_2 = \frac{3 + \sqrt{1}}{2} = 2$

et il existe donc deux réels λ et μ tels que

$$\forall n \in \mathbb{N}, \ u_n = \lambda q_1^n + \mu q_2^n$$

Il reste à déterminer λ et μ . Pour cela écrivons la relation précédente aux rangs 0 et 1.

$$\begin{cases} u_0 &= \lambda q_1^0 + \mu q_2^0 \\ u_1 &= \lambda q_1^1 + \mu q_2^1 \end{cases}$$
$$\begin{cases} 6 &= \lambda + \mu \\ 5 &= \lambda + 2\mu \end{cases}$$
$$\begin{cases} \lambda &= 7 \\ \mu &= -1 \end{cases}$$

Par conséquent,

$$\forall n \in \mathbb{N}, \ u_n = 7 \times 1^n - 1 \times 2^n = 7 - 2^n$$

Exercices 5 - Suites numériques

Exercice 1 (Variation)

Etudier le sens de variation de la suite (u_n) avec :

1.
$$\forall n \in \mathbb{N}^*$$
,

$$u_n = \frac{1}{n}$$

$$2. \ \forall n \in \mathbb{N}^*.$$

$$u_n = \frac{n^2 + 1}{n}$$

$$3. \ \forall n \in \mathbb{N}^*,$$

$$u_n = \ln(n)$$

4.
$$\forall n \in \mathbb{N}$$
,

$$u_n = e^n$$

5.
$$\forall n \in \mathbb{N}, n \geq 3$$
,

$$u_n = \sqrt{n+3}$$

6.
$$\forall n \in \mathbb{N}, n \geq 3$$

$$u_n = \frac{3^n}{n}$$

Exercice 2 (Variation)

Etudier le sens de variation de la suite (u_n) avec :

1.
$$u_0 = 1$$
 et $\forall n \in \mathbb{N}$,

$$u_{n+1} = u_n - u_n^2$$

2.
$$u_0 = 1$$
 et $\forall n \in \mathbb{N}$,

$$u_{n+1} = u_n + e^{u_n}$$

3.
$$u_0 = 1$$
 et $\forall n \in \mathbb{N}$,

$$u_{n+1} = u_n + \ln(1 + |u_n|)$$

Exercice 3 (Variation)

1. La suite (u_n) est définie par :

$$\forall n \in \mathbb{N}, \ u_n = -n + 4$$

(a) Etablir le tableau de variation de

$$f: x \mapsto -x + 4$$

- (b) En déduire le sens de variation de (u_n) .
- 2. La suite (v_n) est définie par :

$$\begin{cases} v_0 = 1 \\ \forall n \in \mathbb{N}, \ v_{n+1} = -v_n + 4 = f(v_n) \end{cases}$$

- (a) Calculer les six premiers termes de la suite.
- (b) Que peut-on conjecturer quant au sens de variation de (v_n) ?

Exercice 4 (Suites arithmétiques)

Donner le terme général puis calculer la somme des dix premiers termes consécutifs pour les suites suivantes :

- 1. $u_0 = 6$ et $\forall n \in \mathbb{N}, u_{n+1} = u_n + 3$.
- 2. $v_0 = 5$ et $\forall n \in \mathbb{N}, v_{n+1} = v_n 1$.
- 3. $w_0 = 6$ et $\forall n \in \mathbb{N}, w_{n+1} = 3 + w_n$.
- 4. $a_0 = 3$ et $\forall n \in \mathbb{N}, a_{n+1} a_n = 2$.
- 5. $b_0 = 6$ et $\forall n \in \mathbb{N}, b_{n+1} b_n + 1 = 0$.
- 6. $c_1 = 5$ et $\forall n \in \mathbb{N}, c_{n+1} = c_n + 2$.
- 7. $d_3 = 6$ et $\forall n \in \mathbb{N}, n \ge 3, d_{n+1} = d_n + 5.$

Exercice 5 (Suites géométriques)

Donner le terme général puis calculer la somme des dix premiers termes consécutifs pour les suites suivantes :

- 1. $u_0 = 2$ et $\forall n \in \mathbb{N}, u_{n+1} = 2u_n$.
- 2. $v_0 = 5$ et $\forall n \in \mathbb{N}, 3v_{n+1} = v_n$.
- 3. $w_0 = 6$ et $\forall n \in \mathbb{N}^*, w_n = \frac{w_{n-1}}{2}$.
- 4. $a_0 = 1$ et $\forall p \in \mathbb{N}, a_{p+1} = 3a_p$.

Exercice 6

La suite (u_n) est définie par :

$$\left\{ \begin{array}{l} u_0=1 \\ \forall n\in\mathbb{N},\ u_{n+1}=-2u_n+3n+2 \end{array} \right.$$

On pose

$$\forall n \in \mathbb{N}, \ v_n = u_n - n - \frac{1}{3}$$

- 1. Calculer u_1, u_2, u_3, v_1, v_2 et v_3 .
- 2. Démontrer que (v_n) est géométrique.
- 3. Calculer v_n en fonction de n.
- 4. Calculer u_n en fonction de n.

Exercice 7

La suite (u_n) est définie par $u_0 = 0$, $u_1 = 1$ et

$$\forall n \in \mathbb{N}^*, \ u_{n+1} = 10u_n - 9u_{n-1}$$

On pose d'autre part

$$\forall n \in \mathbb{N}, \ v_n = u_{n+1} - u_n$$

- 1. Calculer u_2 , u_3 , u_4 , v_0 , v_1 , v_2 , v_3 .
- 2. Montrer que (v_n) est une suite géométrique.
- 3. Calculer v_n en fonction de n.

Programme de Colle 4

<u>Introduction aux fonctions</u> numériques d'une variable réelle

- Déterminer l'ensemble de définition d'une fonction.
- Résoudre une inéquation.
- Encadrer une fonction sur un intervalle.
- Fonctions paires et impaires, symétries de la représentation graphique d'une fonction.
- Polynômes (zéro et factorisation, identification, schéma de Hörner).

Suites numériques

- Définition, sens de variation
- Suites arithmétiques et géométriques (terme général, variation, sommes de termes consécutifs)

Exercices possibles Exercices 1 à 7 semaine 3

Exercice 1

Etudier le sens de variation des suites suivantes définies $\forall n \in \mathbb{N}$ par :

$$u_n = \frac{-n+1}{n+2}$$

$$v_n = \frac{-3n+4}{n+1}$$

$$r_n = \sqrt{2n+1}$$

$$t_n = ne^{-2n}$$

Exercice 2

Pour chacune des suits suivantes, expliciter le terme général en fonction de l'indice. (selon les cas, n, m, p, i, j, etc).

- 1. $\forall k \in \mathbb{N}^{\times}$, $a_{k+1} = -2a_k$ avec $a_1 = 7$.
- 2. $\forall n \ge 2$, $2b_n = b_{n-1}$ avec $b_1 = 3$.
- 3. $\forall p \ge 0$, $c_{p+1} c_p = 3$ et $c_0 = 10$.
- 4. $\forall n \in \mathbb{N}^{\times}, \quad d_n = \frac{d_{n-1}}{3} \text{ avec } d_0 = 1.$
- 5. $\forall i \in \mathbb{N}$, $e_{i+1} + 1 = e_i \text{ avec } e_5 = 10$.
- 6. $\forall j \in \mathbb{N}, \quad 3f_{j+1} 2f_j = 0 \text{ avec } f_0 = 1.$
- 7. $\forall r \in \mathbb{N}^{\times}$, $35k_{r+1} = k_r$ avec $k_5 = 7$.

Exercice 3

Soit u la suite définie par $u_0 = 2$ et

$$\forall n \geqslant 0, \quad u_{n+1} = u_n^2 - 2u_n + 2$$

1. Montrer que

$$v_n = \ln\left(u_n - 1\right)$$

est le terme général d'une suite géométrique.

2. En déduire l'expression de u_n en fonction de n.

Exercice 4

Soit la suite (u_n) définie par $u_0 = 0$ et

$$\forall n \geqslant 0, \quad u_{n+1} = \frac{1}{2}\sqrt{u_n^2 + 12}$$

1. Montrer que la suite $(v_n)_{n\in\mathbb{N}}$, définie par

$$\forall n \in \mathbb{N}, \ v_n = u_n^2 - 4$$

est géométrique.

2. En déduire l'expression de u_n en fonction de n.

Exercices 6 - Suites numériques

Exercice 1 (Arithmético-géo)

En utilisant la méthode vue en cours, calculer u_n en fonction de n si :

1.

$$\begin{cases} u_0 = -2 \\ \forall n \in \mathbb{N}, \ u_{n+1} = -2u_n + 3 \end{cases}$$

2.

$$\begin{cases} u_0 = 1 \\ \forall n \in \mathbb{N}^*, \ 2u_n = 3u_{n-1} + 1 \end{cases}$$

3.

$$\begin{cases} u_1 = -1 \\ \forall n \in \mathbb{N}, \ u_{n+1} = \frac{1}{2}u_n - 1 \end{cases}$$

Exercice 2 (Lin. réc. d'ordre 2)

Déterminer le terme général de la suite u dans les cas suivants :

1.

$$\begin{cases} u_0 = 2 \\ u_1 = 5 \\ \forall n \in \mathbb{N}, \ u_{n+2} = -u_{n+1} + 6u_n \end{cases}$$

2

$$\begin{cases} u_0 = 4 \\ u_1 = 5 \\ \forall n \in \mathbb{N}, \ 2u_{n+2} - 5u_{n+1} - 3u_n = 0 \end{cases}$$

3

$$\begin{cases} u_0 = 1 \\ u_1 = 2 \\ \forall n \in \mathbb{N}^*, \ 4u_{n+1} = 4u_n - u_{n-1} \end{cases}$$

Exercice 3

La suite (u_n) est définie par :

$$\begin{cases} u_2 = 1 \\ \forall n \in \mathbb{N}, \ n \ge 2, \ u_{n+1} = \frac{1}{4}u_n + \frac{3}{2}n + 2 \end{cases}$$

On pose $\forall n \in \mathbb{N}, n \geq 2, v_n = u_n - 2n$.

- 1. Démontrer que (v_n) est géométrique.
- 2. Calculer v_n en fonction de n.
- 3. Calculer u_n en fonction de n.

Exercice 4

La suite (u_n) est définie par :

$$\left\{ \begin{array}{l} u_0=2 \\ \forall n\in\mathbb{N},\ u_n-2u_{n+1}=2n+3 \end{array} \right.$$

Soit $b \in \mathbb{R}$, on pose $\forall n \in \mathbb{N}, \ v_n = u_n + b \times n - 1$.

1. Déterminer b pour que (v_n) soit géométrique.

- 2. Calculer v_n en fonction de n.
- 3. Calculer u_n en fonction de n.

Exercice 5

Les suites (u_n) et (v_n) sont définies par les relations de récurrences suivantes :

$$\begin{cases} u_0 = 1 \\ v_0 = 1 \\ \forall n \in \mathbb{N}, \ u_{n+1} = 3u_n + 2v_n \\ \forall n \in \mathbb{N}, \ v_{n+1} = u_n + 2v_n \end{cases}$$

On se propose de calculer les valeurs de u_n et v_n en fonction de n. Pour cela démontrer que (u_n) vérifie une relation linéaire de récurrence d'ordre 2, calculer u_n en fonction de n puis v_n .

Exercice 6

Les suites (u_n) et (v_n) sont définies par les relations de récurrences suivantes :

$$\begin{cases} u_1 = 1 \\ v_1 = 3 \\ \forall n \in \mathbb{N}, \ u_{n+1} = 3u_n + 4v_n \\ \forall n \in \mathbb{N}, \ v_{n+1} = u_n + 3v_n \end{cases}$$

On pose

$$\forall n \in \mathbb{N}, \ w_n = u_n + 2v_n$$

 $\forall n \in \mathbb{N}, \ t_n = u_n - 2v_n$

- 1. Démontrer que $(w_n)_{n\in\mathbb{N}}$ est géométrique.
- 2. Calculer w_n en fonction de n.
- 3. Quelle est la nature de la suite $(t_n)_{n\in\mathbb{N}}$?
- 4. Donner le terme général de (t_n) .
- 5. Calculer u_n en fonction de n.
- 6. Calculer v_n en fonction de n.

Exercice 7

Soit $p \in \mathbb{R}$ tel que $0 . La suite <math>(u_n)$ est définie par :

$$\begin{cases} u_0 \\ \forall n \in \mathbb{N}, \ u_{n+1} + p \times u_n - p = 0 \end{cases}$$

Soit $\alpha \in \mathbb{R}$, on pose

$$\forall n \in \mathbb{N}, \ v_n = u_n - \alpha$$

- 1. Déterminer α pour que (v_n) soit géométrique.
- 2. Calculer v_n en fonction de n et u_0 .
- 3. Calculer u_n en fonction de n et u_0 .

Programme de Colle 5

Suites numériques

- Définition, sens de variation
- Suites arithmétiques et géométriques (terme général, variation, sommes de termes consécutifs)
- Suites arithmético-géométriques (obtention du terme général)
- Suites récurrentes linéaires d'ordre 2 (obtention du terme général)

Exercices possibles Exercices 1 à 7 semaine 4

Exercice 1

Pour chacune des suits suivantes, expliciter le terme général en fonction de l'indice. (selon les cas, n, m, p, i, j, etc).

- 1. $\forall n \in \mathbb{N}^{\times}, \quad d_n = \frac{d_{n-1}}{3} + 4 \text{ avec } d_0 = 1.$
- 2. $\forall i \in \mathbb{N}, \quad 4e_{i+1} + 1 = e_i \text{ avec } e_0 = 0.$
- 3. $\forall j \in \mathbb{N}, \quad 3f_{i+1} 2f_i = 1 \text{ avec } f_0 = 1.$
- 4. $\forall m \in \mathbb{N}^{\times}$, $al_{m+1} = bl_m$ avec $l_1 = 2$, $a \in \mathbb{R}^*$ et $b \in \mathbb{R}$.
- 5. $\forall n \in \mathbb{N}, \quad 2h_{n+2} + h_{n+1} h_n = 0 \text{ avec}$ $h_0 = h_1 = 1.$
- 6. $\forall r \in \mathbb{N}^{\times}$, $35k_{r+1} = 3k_r + 2k_{r-1}$ avec $k_0 = -3$ et $k_1 = 7$.
- 7. $\forall m \in \mathbb{N}^{\times}, \quad l_{m+1} = l_m + l_{m-1} \text{ avec}$ $l_0 = 1 \text{ et } l_1 = 2.$

Exercice 2

Soit $(u_p)_{p\geqslant 0}$ une suite telle que $u_0=\frac{4}{3}$ et satisfaisant à la relation

$$\forall p \geqslant 0, \quad u_{p+1} = 2u_p + 5^p$$

Pour expliciter le terme général de cette suite, on pose

$$\forall p \in \mathbb{N}, \quad \alpha_p = \frac{u_p}{5^p}$$

- 1. Vérifier que $\forall p \in \mathbb{N}, \ \alpha_{p+1} = \frac{2}{5}\alpha_p + \frac{1}{5}$.
- 2. En déduire l'expression de α_p en fonction de p puis celle de u_p .

Exercice 3

On considère deux suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ telles que $\forall n\in\mathbb{N}$,

$$\begin{cases} u_{n+1} = 2u_n - v_n \\ v_{n+1} = u_n + 4v_n \end{cases} \text{ et } \begin{cases} u_0 = 2 \\ v_0 = -1 \end{cases}$$

1. On considère la suite p définie par

$$\forall n \in \mathbb{N}, \quad p_n = u_n + v_n$$

Montrer que la suite $(p_n)_{n\in\mathbb{N}}$ est géométrique.

En déduire l'expression de p_n en fonction de n.

2. A l'aide de la question précédente, montrer que

$$\forall n \in \mathbb{N}, \quad v_{n+1} = 3v_n + 3^n$$

3. Montrer que la suite $z_n = \frac{v_n}{3^n}$ est arithmétique.

En déduire l'expression de z_n en fonction de n

4. Donner enfin l'expression de v_n puis de u_n en fonction de n.

Exercice 4

Soient u et v les deux suites définies pour tout $n \ge 0$ par

$$u_{n+1} = \frac{1}{3}(2u_n + v_n)$$

 $_{
m et}$

$$v_{n+1} = \frac{1}{3}(u_n + 2v_n)$$

- 1. On pose $t_n = u_n v_n$ et $s_n = u_n + v_n$.
 - (a) Montrer que t et s sont deux suites géométriques.
 - (b) En déduire l'expression de t_n (resp. s_n) en fonction de t_0 (resp. s_0).
- 2. En déduire l'expression de u_n et de v_n en fonction de n, de u_0 et de v_0 .