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Devoir Surveillé 06 - Eléments de Correction

Exercice 1
1. f(x) = ex − x ; lim

x→−∞
f(x) = +∞ (car x → −∞ ; ex → 0)

et f(x = x

(
ex

x
− 1

)
lim

x→+∞
f(x) = +∞ (car

ex

x
→ +∞ : th de cc)

lim
x→−∞

f(x)− x = 0 donc D : y = −x asymptote à C en −∞

2. f ′(x) = ex − 1 ; ex − 1 > 0 ⇔ ex > 1 ⇔ x > 0 ;
x −∞ 0 +∞

f ′(x) − 0
f(x) +∞ ↘ 1 ↗ +∞

3. Pour n ⩾ 2, f est

{
continue

strictement ↘ de ] − ∞ ; 0] vers f(] − ∞; 0]) =

[1;+∞[ qui contient n, donc l’équation f(x) = n a une solution unique dans
]−∞; 0] ; de même :

f est

{
continue

strictement ↗ de [0;+∞[ vers f([0;+∞[) = [1;+∞[ qui contient n,

donc l’équation f(x) = n a une solution unique dans [0;+∞[ ; en conclusion,
pour n ⩾ 2, l’équation f(x) = n a deux solutions de signe contraire.

4. an est la solution positive de f(x) = n, donc an est l’abscisse de point d’intersection
de C et de la droite Dn d’équation y = n

−3 −2 −1 0 1 2 3
−1

0

1

2

3

4

5

6

7

5. f(an) = n, donc f(an+1) = n+1, donc f(an) < f(an+1), et comme les ansont dans
[0;+∞[ et que f est croissante dans [0;+∞[, on obtient : an < an+1, pour tout
n ⩾ 2 ; donc la suite est croissante.

6. On a ean − an = n, donc ean = an + n, donc, comme an > 0, ean ⩾ n, donc
an ⩾ ln(n). Or lim

n→+∞
ln(n) = +∞, donc (th de comparaison), lim

n→+∞
an = +∞.

Exercice 2 (Correction partielle)
Soit n, un entier naturel. On considère, sur l’intervalle I =]0,+∞[, l’équation différentielle
suivante :

xy′ + ny =
1

1 + x2
(En)

1. Pour tout entier n ∈ N, ∀x ∈ I, (Hn) ⇔ y′ + n
xy = 0. C’est une équation

différentielle linéaire d’ordre 1 que l’on va résoudre sur I avec a : x 7→ n
x de classe

C1 sur I. On obtient qu’il existe λ ∈ R tel que

y : x 7→ λe−n ln(x) = λ
1

xn
, I → R

2. (a) Par identification des numérateurs on obtient a = 1, b = 0 et c = −1.

(b) On considère (E0) : y
′ = 1

x + bx+c
1+x2 sur l’intervalle I. Par intégration simple on

trouve une solution particulière de (E0) :

yp : I → R, x 7→ ln(x)− 1

2
ln(1 + x2)

D’où la solution générale de (E0) équation différentielle linéaire d’ordre 1 :

y0 : I → R, x 7→ ln(x)− 1

2
ln(1 + x2) + λ

1

xn

3. Déterminons une solutions particulière sur l’intervalle I =]0,+∞[ de :

y′ +
n

x
y =

1

x(1 + x2)

en utilisant la méthode de variation de la constante. On obtient :

λ′

xn
=

1

x(1 + x2)
⇔ λ′ =

xn−1

1 + x2

Par superposition des solutions on obtient les solutions de :

(a) l’équation (E1)

y1 : I → R, x 7→ Arctan(x) + λ
1

x

(b) l’équation (E2)

y1 : I → R, x 7→ 1

2
ln(1 + x2) + λ

1

x2

1
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(c) l’équation (E3) en remarquant que x2

1+x2 = 1− 1
1+x2

y1 : I → R, x 7→ x−Arctan(x) + λ
1

x3

4. Pour tout entier n ≥ 1, on note : pour tout x ≥ 0,

Fn(x) =

∫ x

0

tn−1

1 + t2
dt.

La fonction t 7→ tn−1

1+t2 étant continue sur R+, Fn est définie et C1 sur R+ et en

constitue une primitive sur R+. Ainsi λ′ = xn−1

1+x2 implique que λ = Fn convient,
d’où les solutions de (En) sont :

yn : I → R, x 7→ Fn(x) + λ
1

xn

5. Dans cette question, on va expliciter une expression de Fn(x).

(a) Soit n ∈ N∗ et x ∈ R+,

Fn(x) + Fn+2(x) =

∫ x

0

tn−1 + tn+1

1 + t2
dt

=

∫ x

0

tn−1(1 + t2

1 + t2
dt

=

∫ x

0

tn−1dt

=
1

n
xn

(b) Exprimer F1(x) et F2(x) en fonction de x ∈ I.

(c) Établir, pour tout n ≥ 2 :

∀x ∈ I, F2n(x) =
(−1)n−1

2
ln(1 + x2) + (−1)n−1

n−1∑
k=1

(−1)k
x2k

2k
.

(d) Établir, pour tout n ≥ 1 :

∀x ∈ I, F2n+1(x) = (−1)n Arctan(x) + (−1)n−1
n−1∑
k=0

(−1)k
x2k+1

2k + 1
.

(e) Exhiber les solutions de (E5) sur I.

6. On note f , la solution de (E1) sur I =]0,+∞[ vérifiant la condition f(1) =
π

4
.

(a) Montrer que ∀x ∈ I, f(x) =
Arctan(x)

x
.

(b) Établir que, pour tout x > 0 :

x

1 + x2
≤ Arctan(x) ≤ x.

(c) En déduire le sens de variation de f sur l’intervalle I.

(d) Dresser le tableau de variation de f sur I (limites aux bords comprises et jus-
tifiées). En particulier, on montrera que f admet une limite finie ℓ en 0 que l’on
calculera.
On posera désormais f(0) = ℓ.

(e) Prouver que f est dérivable en 0 et préciser la valeur de f ′(0).

(f) Tracer le graphe de la fonction f sur I.

7. Dans cette question, on généralise des résultats établis ci-dessus dans le cas parti-
culier n = 1. Soit un entier n ≥ 1.

(a) Etablir que, pour tout x > 0 :

1

1 + x2
× xn

n
≤ Fn(x) ≤

xn

n
.

(b) En déduire la limite de
Fn(x)

xn

n

lorsque x tend vers 0+.

(c) Montrer que, parmi les solutions de (En) sur I =]0,+∞[, il y en a une et une
seule qui possède une limite finie en 0. On note fn cette fonction, prolongée en
0 par continuité.

(d) Justifier que fn est dérivable en 0.

(e) En n’oubliant pas que fn est une solution de l’équation différentielle (En),
déterminer le sens de variation de fn sur [0,+∞[.

(f) Prouver que, pour tout n ≥ 2 :∫ 1

0

fn(x)dx =
π
4 − fn(1)

n− 1
.

Exercice 3
Partie II

9) On justifiera que |un| =
∫ π

0
|sint|

t dt , puis on utilisera le changement de variable
t = s+ nπ . Il sera alors possible d’étudier le signe de |un+1| − |un| , et de majorer
|un| .

10) On exprimera F
(
2 (n+ 1)π

)
− F (2nπ) en fonction de |u2n+1| et |u2n| afin

d’exploiter le résultat précédent.
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11) et 12) Utiliser la conclusion de la question 10).

13) Mathématiquement classique mais plus délicate. Il vaut mieux chercher les points
de la partie suivante.

partie III (Il faut traiter cette partie qui est indépendante)

16) Utiliser le lien évident entre sin(n+2) et sin(n) .

17) Montrer toutes les propriétés en une seule récurrence.

19) U et V ont beaucoup de zéros évidents.

20) Suivre l’énoncé puis exploiter le résultat précédent.

22) Il y a plusieurs points à démontrer (lesquels ?). On justifiera que Φ conserve le
degré pour montrer l’injection de Φ (et de Φn). Le reste en découle.

23) Pn est solution de En. On la cherchera sous la forme Pn =
∑n

k=0 ak X
k (par

identification).

Correction

Partie I

1. On a lim
x→0+

sinx

x
= 1. Par suite, avec ℓ = 1, f est continue à droite en 0

2. Les fonctions x 7→ sin x
x est le quotient de deux fonctions de classe C1 sur R, et le

dénominateur ne s’annule pas sur R∗
+ donc f est de classe C1 sur R∗

+

De plus, pour tout x > 0, f ′(x) = x cos x−sin x
x2 .

Au voisinage de 0 : f ′(x) = 1
x2

(
x
(
1− x2

2 + o(x2)
)
− (x− x3

6 + o(x3))
)

=

−x
3 + o(x)

Par conséquent,
f continue sur [0,+∞[

f de classe C1 sur ]0,+∞[
lim0+ f ′ = 0

 ⇒ f est de classe C1 sur [0,+∞[
f ′(0) = 0

3. Soit φ : x 7→ x cosx− sinx. φ est dérivable sur R et φ′(x) = −x sinx .

Sur In =
[
nπ , (n+ 1)π

]
, φ est continue et strictement monotone donc établit

une bijection de In dans φ(In) qui est un intervalle .

Or φ(nπ)φ((n+ 1)π) = −n(n+ 1)π2 < 0 montre que 0 ∈ φ(In) (c’est une

valeur intermédiaire). il existe un unique réel xn dans In tel que φ(xn) = 0

4. Pour tout n ⩾ 1, on a nπ ⩽ xn ⩽ nπ + π d’où 1 ⩽ xn

nπ ⩽ 1 + 1
n .

Le théorème des pincements prouve alors que limn→+∞
xn

nπ = 1 donc
xn ∼ nπ

5. Pour tout x, f ′(x) est du signe de φ(x).

— sur I0 : φ est décroissante et φ(0) = 0. Donc f est décroissante sur I0

— sur I2n avec n ⩾ 1 : φ est décroissante et s’annule en x2n .

Donc sur I2n (n ⩾ 1)
x 2nπ x2n (2n+ 1)π
f 0 ↗ ↘ 0

— sur I2n+1 avec n ∈ N : φ est croissante et s’annule en x2n+1 .

Donc sur I2n+1

x (2n+ 1)π x2n+1 (2n+ 2)π
f 0 ↘ ↗ 0

6. La courbe représentative de f coupe l’axe des abscisses aux points d’abscisse
nπ, avec n entier n ⩾ 1.

1

π 2π 3π 4π

x1

x2

x3

x4

Partie II

7. La fonction f est continue sur R+ donc admet des primitives sur cet intervalle :

F est la primitive qui s’annule en 0

8. Pour tout entier n nous avons nπ < (n+ 1)π . De plus :

— ∀ t ∈ I2n : f(t) ⩾ 0 donc u2n ⩾ 0

— ∀ t ∈ I2n+1 : f(t) ⩽ 0 donc

u2n+1 ⩽ 0

9. Pour tout n, f garde un signe constant sur In. Par suite, |un| =
∫ (n+1)π

nπ
| sin t|

t dt ce

qui donne en faisant le changement de variable t = s+ nπ : |un| =
∫ π

0
| sin s|
s+nπds .

Ainsi |un+1| − |un| = −π
∫ π

0
| sin s|

(s+nπ)(s+(n+1)π) ds ⩽ 0 . (|un|) est décroissante

De plus : ∀ n ⩾ 1, |un| ⩽ 1
nπ

∫ π

0
| sin s|ds. Par pincements :

limn→+∞ |un| = 0

3
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10. Pour tout entier n nous avons :

— F
(
(2n+ 2)π

)
− F (2nπ)

=
(
F
(
(2n+ 2)π

)
− F

(
(2n+ 1)π

))
+

(
F
(
(2n+ 1)π

)
− F (2nπ)

)
= u2n+1+u2n = −|u2n+1|+ |u2n| ⩾ 0 d’après la question précédente.

— De même F ((2n+3)π)−F ((2n+1)π) = u2n+2+u2n+1 = |u2n+2|−|u2n+1| ⩽ 0.
— Enfin : limn→+∞

(
F (2nπ)− F ((2n+ 1)π)

)
= limn→+∞ u2n = 0 .

Les suites
(
F (2nπ)

)
et

(
F ((2n+ 1)π)

)
sont adjacentes

11. Il en résulte que
(
F (2nπ)

)
et

(
F ((2n+ 1)π)

)
convergent vers une même limite µ.

Cela implique que
(
F (nπ)

)
converge vers µ

12. De plus, pour tout entier n on a : F (2nπ) ⩽ µ ⩽ F ((2n+ 1)π)

ce qui donne pour n = 0 : F (0)︸︷︷︸
=0

⩽ µ ⩽ F (π).

Comme f est décroissante sur [0, π], on a : F (π) =
∫ π

0
f(t) dt ⩽

∫ π

0
f(0)︸︷︷︸
=1

dt ⩽ π .

Finalement 0 ⩽ µ ⩽ π

13. L’idée est d’encadrer x > π par deux multiples consécutifs de π :

nπ ⩽ x < (n+ 1)π ⇔ n ⩽
x

π
< n+ 1 ⇔ n = E

(
x
π

)
En notant nx cette partie entière, on a donc nx π ⩽ x ⩽ nx π + π et

|F (x)− F (nxπ)| ⩽
∫ x

nxπ

| sin t|
t

dt ⩽
1

nxπ

∫ (nx+1)π

nxπ

| sin t| dt ⩽ 1

nxπ

∫ π

0

| sin t| dt

Comme limx→+∞ nx = +∞ , on a limx→+∞ |F (x)− F (nxπ)| = 0 , et compte-

tenu de la limite de la suite
(
F (nπ)

)
, on obtient : limx→+∞ F (x) = µ

Partie III

14. Le calcul donne g′′(x) = − x2 sin(x)+2 x cos(x)−2 sin(x)
x3

15. On obtient immédiatement
P0 = 1 P1 = X P2 = X2 − 2
Q0 = 0 Q1 = 1 Q2 = 2X

16. En dérivant la relation donnée par l’énoncé, on a pour tout x > 0 :

g(n+1)(x) =
P ′

n(x) sin
(n)(x) + Pn(x) sin

(n+1)(x) +Q ′
n(x) sin

(n+1)(x) +Qn(x) sin
(n+2)(x)

xn+1

−(n+ 1)
Pn(x) sin

(n)(x) +Qn(x) sin
(n+1)(x)

xn+2

comme sin(n)(x) = − sin(n+2)(x) , on obtient :

g(n+1)(x) =
Pn+1(x) sin

(n+1)(x) +Qn+1(x) sin
(n+2)(x)

xn+2

avec
Pn+1(X) = X Pn(X) +X Q ′

n(X)− (n+ 1)Qn(X)
Qn+1(X) = X Qn(X)−X P ′

n(X) + (n+ 1)Pn(X)

17. Soit Hn la propriété : ” Pn de degré n de coefficient dominant 1,
Qn de degré n− 1 de coefficient dominant n,
Pn et Qn à coefficients entiers ”
• H1 est vraie.
• Supposons Hn vraie.
• Alors Pn, Qn, P

′
n et Q ′

n sont à coefficients entiers donc Pn+1 et Qn+1 aussi.

De plus X Pn est de degré n + 1 de coefficient dominant 1 et XQ ′
n et Qn

sont de degré strictement inférieur à n + 1 donc Pn+1 est de degré n + 1 de
coefficient dominant 1.

Enfin X Qn, X P ′
n et (n + 1)Pn sont de degré n de coefficients dominants

respectifs n, n et n + 1 donc Qn+1 est degré n de coefficient dominant n + 1.
Donc Hn+1 est vraie.

On démontre de manière analogue que pour tout entier p, P2p est pair et Q2p est

impair et P2p+1 est impair et Q2p+1 est pair.
Pn a la parité de n

Qn a la parité de n+ 1

18. On a P3 = X P2 +X Q ′
2 − 3Q2 soit P3 = X3 − 6X

et Q3 = X Q2 −X P ′
2 + 3P2 soit Q3 = 3X2 − 6

19. Puisque, pour tout x > 0, on a U(x) sin(x) + V (x) cos(x) = 0 :

— pour tout entier k ̸= 0, avec x = 2 k π : ∀ k ∈ N∗ , V (2 k π) = 0

— pour tout entier k ̸= 0, avec x = π
2 + 2 k π : ∀ k ∈ N∗ , U

(
π
2 + 2 k π

)
= 0

U et V admettent une infinité de racines donc U = V = 0 (polynôme nul)

4
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20. En dérivant n+ 1 fois l’égalité x g(x) = sinx , on obtient pour tout x > 0,

x g(n+1)(x) + (n+ 1) g(n)(x) = sin(n+1)(x)

d’où en reportant les formules donnant g(n)(x) et g(n+1)(x) :(
Pn+1(x) + (n+ 1)Qn(x)− xn+1

)
sin(n+1)(x) +

(
(n+ 1)Pn(x)−Qn+1(x)

)
sin(n)(x) = 0

Puisque, à n fixé, l’une des expressions sin(n+1)(x) ou sin(n)(x) vaut ± sin(x)
tandis que l’autre vaut ± cosx, on peut appliquer le résultat de la question
précédente et on a donc :

Pn+1(X) + (n+ 1)Qn(X) = Xn+1 (n+ 1)Pn(X)−Qn+1(X) = 0

21. En reportant Qn+1(X) = (n+ 1)Pn(X) dans la définition de Qn+1 (question 16),

on a X
(
Qn(X)− P ′

n(X)
)
= 0 , ce qui donne (par intégrité) Qn(X) = P ′

n(X)

Des formules Pn+1(X) + (n+ 1)Qn(X) = Xn+1 (question 20)
Pn+1(X) = X Pn(X) +X Q ′

n(X)− (n+ 1)Qn(X) (question 16)

on tire l’égalité suivante

Xn+1 − (n+ 1)Qn(X) = X Pn(X) +X Q ′
n(X)− (n+ 1)Qn(X)

⇔ Xn = P n(X) +Q ′
n(X) ( par régularité)

dans laquelle Qn = P ′
n ⇒ Q ′

n = P ′′
n . Pn est solution de En : y′′ + y = xn

22. L’application Φ : T 7→ T + T ′′ est injective. Si on prend deux polynômes T et R
d’images égales alors T − R est solution polynômiale de y′′ + y = 0 dont les so-
lutions sont une combinaison linéaire de cosinus et sinus qui s’annule une infinité
de fois sur R. Donc l’unique solution polynômiale de cette EDL2 homogène est le
polynôme nul. R[X].

Conclusion Φ est injective

23. Cherchons Pn =
∑n

k=0 bk X
k qui soit solution de En. On a

Pn + P ′′
n =

n∑
k=0

bk X
k +

n∑
k=2

k(k − 1) bk X
k−2

=

n∑
k=0

bk X
k +

n−2∑
k=0

(k + 2)(k + 1) bk+2 X
k

= bnX
n + bn−1X

n−1 +

n−2∑
k=0

(
bk + (k + 2)(k + 1)bk+2

)
Xk = Xn

Par suite bn = 1, bn−1 = 0 et pour tout k ⩽ n− 2, bk = −(k + 2)(k + 1) bk+2.

— Cela donne : bn = 1 , bn−2 = −n(n− 1) , bn−4 = n(n− 1)(n− 2)(n− 3),

et, par une récurrence évidente : ∀ k ∈
[[
1, p

]]
bn−2k = (−1)k n!

(n−2k)!

— et de même : bn−1 = 0 , bn−3 = 0 et, dans les mêmes conditions : bn−2k+1 = 0 .

Finalement, avec p = E
(
n
2

)
P =

∑p
k=0(−1)k n!

(n−2k)! X
n−2k

24. Les équations différentielles En sont linéaires. Les solutions sont la somme d’une
solution particulière de cette équation (Pn en est une), et de la solution générale
de y′′ + y = 0.

L’équation caractéristique t2 + 1 = 0 admet ±i pour solutions, d’où les solu-
tions de En

x 7→ Pn(x) +A cos(x) +B sin(x) , (A,B) ∈ R2
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