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Devoir Surveillé 05 - Eléments de Correction

Exercice 1
1. A2 =

 1 3 −6
−6 10 −12
−3 3 −2

 = −A+ 2I3

2. Donc A est inversible et A−1 =
1

2
(A+ I3)

3. - Pour n = 0,

{
0A+ 1I3 = I3

A0 = I3
, donc la relation est vraie au rang 0 ;

- Soit n un entier naturel quelconque ; on suppose que An = unA+ vnI3 alors

An+1 = (unA+vnI3)A = unA
2+vnA = un(−A+2I3)+vnA = (−un+vn)A+2unI3

donc An+1 = (un+1A+ vn+1I3) . La relation est héréditaire ; donc :
pour tout n entier naturel, An = unA+ vnI3

4.

(a) xn = un + vn, donc

xn+1 = un+1 + vn+1 = −un + vn + 2un = un + vn = xn,

donc la suite (xn) est constante et pour tout n entier naturel, xn = x0 =
u0 + v0 = 1 ;

(b) yn = 2un − vn, donc

yn+1 = 2un+1 − vn+1 = −2un + 2vn − 2un = −4un + 2vn = −2yn.

Donc la suite ( yn) est géométrique de raison 2 et de 1er terme y0 = −1, donc
yn = −(−2)n.

(c) On a

{
xn = un + vn
yn = 2un − vn

, d’où :


un =

1

3
(xn + yn)

vn =
1

3
(2xn − yn)

, soit :


un =

1

3
(1− (−2)n)

vn =
1

3
(2 + (−2)n)

;

5. Et donc : An =
1

3
(1− (−2)n)A+

1

3
(2 + (−2)n) I3, soit

An =

[
1

3
− 1

3
(−2)n

]
.A+

[
2

3
+

1

3
(−2)n

]
.I3

pour n = −1,[
1

3
− 1

3
(−2)−1

]
.A+

[
2

3
+

1

3
(−2)−1

]
.I3 =

1

2
A+

1

2
I3 = A−1

d’après la question 2). Donc : la formule est encore valable pour n = −1

Exercice 2
Devoir surveillé 4

Exercice 3
Partie A

1. (a) On a AB = |zB − zB| =
∣∣eiπ3 ∣∣ = 1, ce qui signifie que B est à 1 de A donc

appartient au cercle (C).

(b) On a
(−→
AF ;

−→
AB
)
= arg

(
zB − zA
zF − zA

)
+ 2kπ avec k ∈ Z, soit(−→

AF ;
−→
AB
)
= arg

(
ei

π
3

)
+ 2kπ et donc(−→

AF ;
−→
AB
)
=

π

3
+ 2kπ avec k ∈ Z.

Le triangle ABF est isocèle (AB = AF = 1) et a un angle au sommet de

mesure
π

3
: il est donc équilatéral.

Le point B appartient donc à la médiatrice de [AF] et au cercle (C).
2. (a) On a zB − zA = ei

π
3 .

zE − zA = 1 + (zB)
2 − 1 = (zB)

2
=
(
1 + ei

π
3

)2
= 1 + 2ei

π
3 + ei

2π
3 =

1 + 2

(
1

2
+ i

√
3

2

)
− 1

2
+ i

√
3

2
=

3

2
+ i

√
3

2
= 3

(
1

2
+ i

√
3

2

)
= 3ei

π
3 .

(b) Le résultat précédent montre que :

zE − zA = 3 (zB − zA) ou encore
−→
AE = 3

−→
AB égalité vectorielle qui montre que E appartient à la droite (AB)

et a pour abscisse 3 si le repère choisi est le couple (A, B).

3. On construit E tel que AE = 3AB.

Partie B

Pour tout nombre complexe z tel que z ̸= 1, on considère les points M et M ′ d’affixes
respectives z et z′ où z′ = 1 + z2.

1
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1. On a
z′ − 1

z − 1
=

zM ′ − zA
zM − zA

.

Un argument de ce quotient est donc simplement
(−−→
AM ;

−−→
AM ′

)
.

2. Si
−−→
AM ′ ̸= −→

0 , les points sont alignés si et seulement si l’angle de la question

précédente est nul, autrement dit si le quotient
z′ − 1

z − 1
est un réel soit puisque

z′ − 1 = z2, si le quotient
z2

z − 1
est réel.

Si
−−→
AM ′ =

−→
0 , alors z2 = 0, donc

z2

z − 1
est encore un réel (ici nul).

Exercice 4
1. L’équation s’écrit x2 + y2 = 4. Comme 0 < x2 < 4 ⇒ 0 < x < 2 et de même

0 < y2 < 4 ⇒ 0 < y < 2, le seul couple à essayer est (1 ; 1) qui n’est pas solution.

• On peut aussi écrire : x2 + y2 = 4 ⇔ x2 = 4− y2 ⇔ x2 = (2 + y)(2− y) : la
seule possibilité d’avoir un carré est que 2 + y = 2 − y ⇔ 2y = 0 ce qui n’est pas
possible.

2. (a) On a donc x2 + y2 = p2.

• Si x et y sont pairs leurs carrés sont pairs et la somme x2 + y2 aussi :
ce n’est pas possible puisque l’on a vu que p est premier supérieur à 2, donc
impair, donc son carré est aussi impair ;

• Si x et y sont impairs leurs carrés sont impairs et la somme x2 + y2 est
paire : même impossibilité puisque p2 est impair.

Donc x et y sont de parités différentes.

(b) x et y sont non nuls donc x2 + y2 = p2 ⇒ 0 < x2 < p2 ⇒ 0 < x < p : x ne peut
donc diviser p qui est premier. Même raisonnement pour y.

(c) Supposons qu’il existe un diviseur d commun à x et à y. Il existe donc deux
naturels k et k′ tels que x = kd et y = k′d.

On a donc k2d2 + k′2d2 = p2 ⇔ d2
(
k2k′2

)
= p2.

Ceci signifie que d2 divise p2. p étant premier les seuls diviseurs de p2 sont
1, p et p2 ;

• si d2 = p2, alors d = p, alors x et y sont des multiples de p ce qui n’est
pas possible d’après la question précédente ;

• si d2 = p, p aurait trois diviseurs 1, p et p2, ce qui n’est pas possible
puisque p est premier ;

• il reste donc d = 1, ce qui signifie que x et y sont premiers entre eux.

3. (a) On a x2 + y2 =
∣∣u2 − v2

∣∣2 + (2uv)2 = u4 − 2u2v2 + v4 + 4u2v2 =

u4 + v4 + 2u2v2 =
(
u2 + v2

)2
= p.

Ceci montre que le couple
(∣∣u2 − v2

∣∣ ; 2uv
)
est solution de l’équation E.

(b) • Si p = 5 = 1 + 4 = 12 + 22, on peut prendre u = 1 et v = 2.

Le couple solution est donc
(∣∣12 − 22

∣∣ ; 2× 1× 2
)
= (3 ; 4).

On retrouve le triplet pythagoricien (3 ; 4 ; 5) : 32 + 42 = 52.

• Si p = 13 = 4 + 9 = 22 + 32, on peut prendre u = 2, v = 3.

Le couple solution est donc
(∣∣22 − 32

∣∣ ; 2× 2× 3
)
= (5 ; 12).

52 + 122 = 25 + 144 = 169 = 132.

4. (a) • p = 3 = 1 + 2 = 2 + 1, donc p n’est pas la somme de deux carrés.

• p = 7 = 1 + 6 = 4 + 3,donc p n’est pas la somme de deux carrés.

(b) • x2 + y2 = 9 ; on a donc x2 < 9 et y2 < 9 ou encore x < 3 et y < 3.

On a vu que x et y sont de parités différentes on ne peut avoir que (1 ; 2)
ou (2 ; 1) comme candidats : ils ne sont pas solutions car 1 + 4 = 5 ̸= 9 ;

• x2 + y2 = 49 ; on a donc x2 < 49 et y2 < 49 ou encore x < 7 et y < 7.

Compte tenu de la parité différente de x et de y les couples solutions peuvent
être :

(1 ; 2), (1 ; 4), (1 ; 6), (2 ; 1), (2 ; 3), (2 ; 5), (3 ; 2), (3 ; 4), (3 ; 6),
(4 ; 1), (4 ; 3),

(4 ; 5), (5 ; 2), (5 ; 4), (5 ; 6), (6 ; 1), (6 ; 3), (6 ; 5).

Aucun de ces couples n’est solution, donc l’équation x2 + y2 = 49 n’a pas
de solution.

Exercice 5
PARTIE I

E =
{
f ∈ C0(R) — ∀ x, y ∈ R, f(x+ y) + f(x− y) = 2f(x)f(y)

}
F =

{
f ∈ E — f ̸= 0 et ∃ x ∈ R f(x) = 0

}
1. La fonction ”cos” est définie, continue sur R, et

∀ (x, y) ∈ R2 cos(x+y)+cos(x−y) = 2 cos(x) cos(y) est bien connu. cos ∈ E

2. C’est une démonstration simple du cours : ∀ x, y ∈ R

ch(x+ y) =
ex+y + ex−y

2
=

1

2

(
ex ey + e−xe−y

)
=

1

2

(
ch x+ sh x

) (
ch y + sh y

)
+
(
ch x− sh x

) (
ch y − sh y

)
soit, en développant : ch(x+ y) = ch x ch y + sh x sh y

En remplaçant ”y” par ”−y ”, on obtient ch(x− y) = ch x ch y − sh x sh y

2
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En ajoutant, il vient : ch(x+ y) + ch(x− y) = 2 ch x ch y.

La fonction ”ch” étant continue, nous pouvons dire ch ∈ E

3. Si f ∈ E , soit fα : x 7→ fα(x) = f(αx).

⋄ fα est définie, continue sur R composée de f et de x 7→ αx continues

⋄ ∀ x, y ∈ R, fα(x+ y) + fα(x− y) = f(αx+ α y) + f(αx− α y)
or f ∈ E donc = 2 f(αx) f(α y) = 2 fα(x) fα(y)

Ceci montre bien que f ∈ E ⇒ fα ∈ E

4. (a) Avec x = y = 0, la propriété devient f(0) + f(0) = 2 f(0)2

donc f(0) = f(0)2 ⇔ f(0)
(
f(0)− 1

)
= 0 Conclusion f(0) ∈

{
0, 1
}

(b) Si f(0) = 0, alors ∀ x ∈ R f(x+ 0) + f(x− 0) = 2 f(x) f(0)︸︷︷︸
=0

= 0

donc 2 f(x) = 0. Conclusion f(0) = 0 ⇒ f = 0 fonction nulle

(c) Si f(0) = 1, alors ∀ x ∈ R f(0 + x) + f(0− x) = 2 f(0)︸︷︷︸
=1

f(x)

donc f(−x) = f(x) Conclusion f(0) = 1 ⇒ f est paire

PARTIE II

A - f ∈ E et f(0) = 1 (donc f est paire)

Notons que la continuité de f montre son intégrabilité.

5. (a) ∀ r > 0, utilisons le changement de variable de classe C1 : x+y = u dx = d u

qui donne immédiatement
∫ r

0
f(x+ y) dx =

∫ y+r

y
f(u) du

(b) On fixe x ∈ R et on intègre par rapport à y l’égalité f(x + y) + f(x − y) =
2 f(x) f(y)∫ r

0
f(x+ y) dy +

∫ r

0
f(x− y)︸ ︷︷ ︸
=f(y−x)

dy = 2
∫ r

0
f(x) f(y) dy

⇔
∫ r

0
f(x+ y) dy +

∫ r

0
f(−x+ y) dy = 2

∫ r

0
f(x) f(y) dy f paire

⇔
∫ x+r

x
f(u) du+

∫ −x+r

−x
f(u) d u = 2 f(x)

∫ r

0
f(y) dy voir (a)

f étant paire, on obtient bien
∫ x+r

x
f(u) du+

∫ x

x−r
f(u) d u = 2 f(x)

∫ r

0
f(y) dy

6. (a) La fonction f étant continue et f(0) = 1, il existe un voisinage de 0 où f(x) >
1

2
.

Un tel voisinage contient un intervalle de la forme [0, r] (avec 0 < r). ainsi

∃ r > 0,
∫ r

0
f(y) d y ⩾

∫ r

0
1
2 dy = r

2 > 0 ∃ r > 0
∫ r

0
f(y)) dy > 0

Notons c = 2
∫ r

0
f(y)) dy

(b) La fonction f étant continue sur R, elle admet une primitive F surR (qui est
de classe C1). En utilisant 5-b), nous avons

f(x) =

∫ x+r

x
f(u) d u+

∫ x

x−r
f(u) d u

2
∫ r

0
f(y) d y

=
F (x+ r)− F (x− r)

c

Comme F ∈ C1(R) nous avons f ∈ C1(R)

(c) On reprend le raisonnement précédent sachant que f est de classe C 1. La pri-
mitive F est donc de classe C 2, d’où f est également de classe C 2.

Le raisonnement par récurrence est immédiat : si f est de classe C n, alors
F est de classe C n+1 et f est de classe C n+1.

Conclusion : ∀ n ∈ N f ∈ C n(R) soit f ∈ C∞

(d) En dérivant la formule établie au 6-b) c f(x) = F (x+ r)− F (x− r),

il vient c f ′(x) = f(x+ r)− f(x− r)

7. On dérive encore ( f est de classe C∞) : c f ′′(x) = f ′(x+ r)− f ′(x− r).

On multiplie par c et on utilise deux fois le résultat précédent :

c 2 f ′′(x) = f(x+ 2r)− f(x)︸ ︷︷ ︸
= c f ′(x+r)

− f(x)− f(x− 2r)︸ ︷︷ ︸
= c f ′(x−r)

= f(x+2r)−2f(x)+f(x−

2r)

Mais f ∈ E montre que f(x + 2r) + f(x − 2r) = 2 f(x) f(2r), ce qui donne
finalement c 2 f ′′(x) = 2 f(x) f(2r)− 2 f(x) = 2

(
f(2r)− 1

)︸ ︷︷ ︸
=constante

f(x) soit,

f ′′(x) = λ f(x)

B - Conclusion :

8. Les solutions de l’équation différentielle linéaire (∆) y ′′ = µ y du second ordre
à coefficients constants y = µ y sont bien connues. L’équation caractéristiques est
t2 − µ = 0

— si µ > 0 alors t = ±√
µ donc y = Ae

√
µx +B e−

√
µx

3
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— si µ = 0 alors t = 0 racine double donc y = Ax+B
— si µ < 0 alors t = ± i

√
−µ donc y = A cos

(√
−µx

)
+B sin

(√
−µx

)
9. Si f ∈ E alors :

— f n’est pas la fonction nulle donc f(0) = 1 (voir 4-b)
— f est solution de l’équation différentielle (∆) : y′′ = µ y (voir 7)

(ceci est une condition nécessaire, a priori non suffisante).

f(0) = 1 et f paire imposent des conditions (nécessaires) sur A et B :
— si µ > 0 il vient A+B = 1 et ∀ x ∈ R (A−B)

(
e
√
µx − e−

√
µx
)︸ ︷︷ ︸

=2 sh(
√
µx)

= 0.

Comme le ”sh” n’est pas identiquement nul, A = B =
1

2
soit

y = ch
(√

µx
)
qui répond à la question (voir 2 et 3) : f : x 7→ ch

(
αx
)

α > 0

— si µ = 0 il vient A = 1 et B = 0 soit f(x) = 1 qui convient (fonction continue,
non identiquement nulle et qui vérifie 1 + 1 = 1 · 1 · 1) f : x 7→ 1

Note : c’est la solution précédente avec α = 0

— si µ < 0 il vient A = 1 et B = 0, donc f(x) = cos
(√

−µx
)
qui convient (voir la

question 1) f : x 7→ cos
(
αx
)

α > 0

En remarquant que la fonction nulle (qui convient) est la solution précédente avec
α = 0 et que les fonctions cos et ch sont paires, on peut omettre les conditions sur
α.

Conclusion E =
{
x 7→ cos(αx) α ∈ R

}
∪
{
x 7→ ch(αx) α ∈ R

}
10. F est composé des fonctions f ∈ E , non identiquement nulles et qui s’annulent au

moins une fois sur R. Il est clair que E =
{
x 7→ cos(αx) α ∈ R

}
PARTIE III

A - f ∈ F ⇔ f ∈ E , f ̸= 0 et f s’annule au moins une fois

11. Si f ∈ F , alors f ∈ E. On peut utiliser la question 4 qui montre que f(0) ̸= 0 (f

serait la fonction nulle) Conclusion f ∈ F ⇒ f(0) = 1

Comme de plus f est paire, s’annule au moins une fois, et que ce n’est pas en
0, on peut donc dire ∃ x ̸= 0 f(x) = f(−x) = 0 Conclusion

f ∈ F ⇒ ∃ x > 0 f(x) = 0

12. E =
{
x > 0 — f(x) = 0

}
est un sous ensemble de R, non vide et minoré (par 0).

E admet donc une borne inférieurs
a = inf E = inf

{
x > 0 — f(x) = 0

}
existe

13. E étant minoré par 0, il est déjà acquis que a ⩾ 0.

a est limite d’une suite d’éléments de E. En effet, ∀ n > 0, a +
1

n
n’est pas

minorant de E, d’où ∃ xn ∈ E a ⩽ xn < a +
1

n
. Quand n tend vers l’infini,

xn → a (par pincement). a est limite d’une suite d’éléments de E

La continuité de f montre que : f(a) = limn→∞ f
(
xn

)︸ ︷︷ ︸
=0

= 0 donc f(a) = 0

Comme f(0) = 1, nous en séduisons a ̸= 0 Conclusion a > 0 et f(a) = 0

Note : autre démonstration (par l’absurde)

si f(a) ̸= 0, la continuité de f en a montre l’existence de ν > 0 tel que f
ne s’annule pas sur l’intervalle ]a − ν, a + ν[. Or a = inf E donc tout voisinage
de a rencontre E, ce qui signifie que f doit s’annuler sur cet intervalle, d’où la
contradiction.

Note : a = inf E et a ∈ E donc a = minE plus petit élément de E

14. Montrons que ∀ x x ∈ [ 0 , a [⇒ f(x) > 0 en procédant par l’absurde :

si ∃ u ∈] 0 , a [, f(u) ⩽ 0 (u n’est pas nul car f(0) = 1 > 0) alors

— si f(u) = 0, comme u > 0 nous avons u ∈ E donc u ⩾ a. Il y a contradiction.
— si f(u) < 0, comme f(0) = 1 > 0 et f est continue, le théorème des valeurs

intermédiaires montre ∃ v ∈]0, u[⊂]0, a[, f(v) = 0 ce qui est impossible (rai-
sonnement ci-dessus en remplaçant u par v).

Dans les deux cas il y a contradiction Conclusion ∀ x, x ∈ [0, a[⇒ f(x) > 0

B - ω =
π

2a
et g(x) = cos(ω x)

15. (a) La propriété de f avec x = y = a
2 q+1 donne f

(
a
2q

)
+ f(0) = 2

(
f
(

a
2q+1

)) 2

.

Comme f(0) = 1, il vient f
(

a
2q

)
+ 1 = 2

(
f
(

a
2q+1

)) 2

(b) Comme g ∈ E , elle vérifie la même relation que ci-dessus.

Montrons par récurrence sur q que ∀ q ∈ N f(
a

2q+1
) = g(

a

2q+1
)

4
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— Amorce : par définition de g : g(a) = cos
π

2
= 0

— Hérédité : si g
( a

2q

)
= f

( a

2q

)
, alors 1 + g

( a

2q

)
= 1 + f

( a

2q

)
soit 2

(
f
( a

2q+1

))2
= 2

(
g
( a

2q+1

))2
Mais

a

2q+1
∈]0, a[ où f et g

sont positives donc f
( a

2q+1

)
= g

( a

2q+1

)
que nous souhaitions.

Conclusion ∀q ∈ N, f
( a

2q

)
= g

( a

2q

)
On admet que ∀ p, q ∈ N, f

(
p
a

2q

)
= g

(
p
a

2q

)
En fait, la démonstration est assez simple (par récurrence transfinie sur p) :

— p = 0 : f(0) = g(0) = 1

— p = 1 : f
( a

2q

)
= g

( a

2q

)
est le résultat précédent

— hérédité : si ∀ k ∈ N, 0 ⩽ k ⩽ p ⇒ f
(
k
a

2q

)
= g

(
k
a

2q

)
alors,

la propriété des éléments de E avec x = p
a

2q
et y =

a

2q
donne

f
(
(p+ 1)

a

2q

)
+ f

(
(p− 1)

a

2q

)
︸ ︷︷ ︸

=A

= 2 f
(
p
a

2q

)
︸ ︷︷ ︸

=B

f
( a

2q

)
︸ ︷︷ ︸

=C

et

g
(
(p+ 1)

a

2q

)
+ g

(
(p− 1)

a

2q

)
︸ ︷︷ ︸

=A

= 2 g
(
p
a

2q

)
︸ ︷︷ ︸

=B

g
( a

2q

)
︸ ︷︷ ︸

=C

d’où

f
(
(p+ 1)

a

2q

)
= g

(
(p+ 1)

a

2q

)
16. Le résultat 15-b montre que ∀ p, q ∈ N f

(
p
a

2q

)
= g

(
p
a

2q

)
.

La parité de f et g permet de passer aux entiers relatifs (p ∈ Z).

Ainsi : ∀ p ∈ Z , ∀ q ∈ N , f
(
p a

2 q

)
= g
(
p a

2 q

)
17. Tout réel x est la limite d’une suite

(
xn

)
d’éléments de la forme ci-dessus.

Comme f(xn) = g(xn) et que f et g sont continues, nous avons

f(x) = limn→∞ f(xn) = limn→∞ g(xn) = g(x) Conclusion f = g

18. Nous venons de voir que : ∀ f ∈ F f(x) = cos(ω x) où ω =
π

2a
est un réel

positif quelconque F ⊂
{
x 7→ cos(ω x) — ω ∈ R ∗

+

}
.

Réciproquement : nous savons qu’une telle fonction g est élément
de E , avec g ̸= 0 , et que g s’annule au moins une fois sur R :
F =

{
x 7→ cos(ω x) — ω ∈ R ∗

+

}
.

Enfin, la parité de la fonction ”cos” permet d’admettre les coefficients ω négatifs.

Conclusion F =
{
x 7→ cos(ω x) — ω ∈ R∗}
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