Devoir Maison 20 - Eléments de Correction

Exercice 1

Partie A : Etude de la matrice A

1.
$$(A-I)^2 = \begin{pmatrix} -1 & 1 & 2 \\ -1 & 1 & 2 \\ -3 & 3 & 0 \end{pmatrix} \begin{pmatrix} -1 & 1 & 2 \\ -1 & 1 & 2 \\ -3 & 3 & 0 \end{pmatrix} = \begin{pmatrix} -6 & 6 & 0 \\ -6 & 6 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$(A-I)^3 = (A-I)^2 (A-I) = \begin{pmatrix} -6 & 6 & 0 \\ -6 & 6 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} -1 & 1 & 2 \\ -1 & 1 & 2 \\ -3 & 3 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

2. Puisque $(A - I)^3$ est la matrice nulle, on a $A^3 - 3A^2 + 3A = I$ autrement dit $A(A^2 - 3A + 3I)A = I$ d'où A inversible.

Partie B: Recherche d'une solution particulière

- 1. La fonction φ est de classe \mathcal{C}^2 comme composée de :
 - la fonction polynomiale $x \mapsto 1 + x$ de classe C^2 sur]-1,1[, à valeurs dans $]0,+\infty[$
 - et de la fonction $y \mapsto \sqrt{y}$ de classe \mathcal{C}^2 sur $]0, +\infty[$.

Il est important de noter que 1+x ne s'annule pas sur l'intervalle considéré (ouvert en -1) car la fonction $y\mapsto \sqrt{y}$ n'est pas de classe C^2 (ni $m\tilde{A}^a$ me dérivable) en 0.

On dérive deux fois φ pour obtenir $\varphi'(0)$ et $\varphi''(0)$. Pour tout $x \in]-1,1[$:

$$\varphi'(x) = \frac{1}{2\sqrt{1+x}}$$
 ; $\varphi''(x) = \frac{1}{2} \times \left(-\frac{1}{2}\right) (1+x)^{-\frac{3}{2}} = -\frac{1}{4(1+x)^{\frac{3}{2}}}$.

et donc : $\varphi'(0) = \frac{1}{2}$; $\varphi''(0) = -\frac{1}{4}$.

2. La fonction φ étant de classe \mathcal{C}^2 au voisinage de 0 (sur un intervalle ouvert contenant 0), elle y admet un développement limité à l'ordre 2 donné par la formule de Taylor-Young :

$$\varphi(x) = \underbrace{\varphi(0)}_{=1} + \underbrace{\varphi'(0)}_{=\frac{1}{2}} x + \underbrace{\frac{\varphi''(0)}{2}}_{=-\frac{1}{8}} x^2 + x^2 \varepsilon(x) \quad \text{avec } \varepsilon \longrightarrow_0 0$$

Le réel α recherché vaut donc $-\frac{1}{8}$.

3. En développant selon $(a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ac) \gg$, on a :

$$(P(x))^{2} = \left(1 + \frac{x}{2} - \frac{x^{2}}{8}\right)^{2}$$

$$= 1 + \left(\frac{x}{2}\right)^{2} + \left(-\frac{x^{2}}{8}\right)^{2} + 2\left(\frac{x}{2} - \frac{x^{2}}{8} + \frac{x}{2} \times \left(-\frac{x^{2}}{8}\right)\right)$$

$$= 1 + \frac{x^{2}}{4} + \frac{x^{4}}{64} + x - \frac{x^{2}}{4} - \frac{x^{3}}{8}$$

$$= 1 + x - \frac{x^{3}}{8} + \frac{x^{4}}{64}$$

4. On obtient donc : $(P(C))^2 = P^2(C) = I + C - \frac{1}{8}C^3 + \frac{1}{64}C^4 = I + C = A$ (d'après 1., $C^3 = 0$ et donc aussi $C^4 = 0$).

La matrice M = P(C) vérifie donc bien $M^2 = A$, et :

$$M = P(C) = I + \frac{1}{2}C - \frac{1}{8}C^{2}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \frac{1}{2}\begin{pmatrix} -1 & 1 & 2 \\ -1 & 1 & 2 \\ -3 & 3 & 0 \end{pmatrix} - \frac{1}{8}\begin{pmatrix} -6 & 6 & 0 \\ -6 & 6 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$= \frac{1}{4}\begin{pmatrix} 5 & -1 & 4 \\ 1 & 3 & 4 \\ -6 & 6 & 4 \end{pmatrix}.$$

Partie C: Résolution complète de l'équation

1. (a) En notant U, V et W les vecteurs-colonnes correspondant respectivement à u, v et w, les relations v = f(w) - w et u = f(v) - v se traduisent ainsi :

$$V = AW - W = CW = \begin{pmatrix} -1 & 1 & 2 \\ -1 & 1 & 2 \\ -3 & 3 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ -3 \end{pmatrix}$$

$$U = AV - V = CV = \begin{pmatrix} -1 & 1 & 2 \\ -1 & 1 & 2 \\ -3 & 3 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ -3 \end{pmatrix} = \begin{pmatrix} -6 \\ -6 \\ 0 \end{pmatrix}$$

et on a donc : v = (1, 1, -3) et u = (-6, -6, 0).

(b) Comme \mathbb{R}^3 est de dimension 3, montrer que la famille de trois vecteurs (u,v,w) est une base revient à prouver qu'elle est génératrice, c'est-à-dire que son rang vaut 3:

$$\operatorname{rg}(U|V|W) = \operatorname{rg}\begin{pmatrix} -6 & 1 & 1 \\ -6 & 1 & 0 \\ 0 & -3 & 1 \end{pmatrix} =_{L_2 \leftarrow L_2 - L_1} \operatorname{rg}\begin{pmatrix} -6 & 1 & 1 \\ 0 & 0 & -1 \\ 0 & -3 & 1 \end{pmatrix}$$
$$=_{L_2 \leftrightarrow L_3} \qquad \operatorname{rg}\begin{pmatrix} -6 & 1 & 1 \\ 0 & -3 & 1 \\ 0 & 0 & -1 \end{pmatrix} = 3$$

(matrice triangulaire à coefficients diagonaux tous non nuls)

(c) Calculons f(u) en utilisant la matrice $A:AU=\begin{pmatrix}0&1&2\\-1&2&2\\-3&3&1\end{pmatrix}\begin{pmatrix}-6\\-6\\0\end{pmatrix}=\begin{pmatrix}-6\\-6\\0\end{pmatrix}$

Les relations de l'énoncé nous donnent directement f(v) et f(w) comme combinaisons linéaires de u, v et w: f(v) = u + v; f(w) = v + w. On en déduit la matrice de f dans la base (u, v, w):

$$\operatorname{mat}_{\mathcal{B}'}(f) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = T$$

- (d) Puisque A et T représentent l'endomorphisme f dans les bases \mathcal{B} et \mathcal{B}' respectivement, en notant $P = P_{\mathcal{B} \to \mathcal{B}'}$ la matrice de passage de \mathcal{B} à \mathcal{B}' (donc inversible), on a : $P^{-1}AP = T$.
- 2. (a) Supposons que $N^2 = T$. Alors :

donc f(u) = u

$$NT = NN^2 = N^3 = N^2N = TN.$$

En posant
$$N=\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$$
, la relation $NT=TN$ s'écrit :

$$\underbrace{\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}}_{= \begin{pmatrix} a & a+b & b+c \\ d & d+e & e+f \\ g & g+h & h+i \end{pmatrix}}_{= \begin{pmatrix} a+d & b+e & c+f \\ d+g & e+h & f+i \\ g & h & i \end{pmatrix}} = \underbrace{\begin{pmatrix} a+d & b+e & c+f \\ d+g & e+h & f+i \\ g & h & i \end{pmatrix}}_{= \begin{pmatrix} a+d & b+e & c+f \\ d+g & e+h & f+i \\ g & h & i \end{pmatrix}}_{= \begin{pmatrix} a+d & b+e & c+f \\ d+g & e+h & f+i \\ g & h & i \end{pmatrix}}$$

ce qui nous donne le système :

$$\begin{cases} a = a+d \\ a+b = b+e \\ b+c = c+f \\ d = d+g \\ d+e = e+h \\ e+f = f+i \\ g+h = h \\ h+i = i \end{cases} \underbrace{SSi} \begin{cases} d = 0 \\ a = e \\ b = f \\ g = 0 \\ d = h \\ e = i \\ g = 0 \\ h = 0 \end{cases}$$

Par conséquent, si $N^2=T$, alors N est de la forme $\begin{pmatrix} a & b & c \\ 0 & a & b \\ 0 & 0 & c \end{pmatrix}$ avec $a,b,c\in\mathbb{R}$.

(b) Si $N^2 = T$, alors avec les notations de la question précédente :

$$N^{2} = \begin{pmatrix} a & b & c \\ 0 & a & b \\ 0 & 0 & c \end{pmatrix} \begin{pmatrix} a & b & c \\ 0 & a & b \\ 0 & 0 & c \end{pmatrix} = \begin{pmatrix} a^{2} & 2ab & b^{2} + 2ac \\ 0 & a^{2} & 2ab \\ 0 & 0 & a^{2} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

On a donc:

$$\begin{cases} a^2 = 1 \\ 2ab = 1 \\ b^2 + 2ac = 0 \end{cases} \xrightarrow{\text{SSi}} \begin{cases} a = 1 \\ b = \frac{1}{2} \\ c = -\frac{1}{8} \end{cases} \text{ ou } \begin{cases} a = -1 \\ b = -\frac{1}{2} \\ c = \frac{1}{8} \end{cases}$$

On obtient donc deux solutions possibles :

$$N_1 = \begin{pmatrix} 1 & \frac{1}{2} & -\frac{1}{8} \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 1 \end{pmatrix} \text{ et } N_2 = -N_1 = \begin{pmatrix} -1 & -\frac{1}{2} & \frac{1}{8} \\ 0 & -1 & -\frac{1}{2} \\ 0 & 0 & -1 \end{pmatrix}$$

et on vérifie qu'il s'agit effectivement de solutions à l'équation $(N_1^2 = N_2^2 = T)$.

3. Soit $M \in \mathcal{M}_3(\mathbb{R})$. En posant $N = P^{-1}MP$, on a :

$$M^2 = A \underline{\text{ssi}} (PNP^{-1})^2 = A \underline{\text{ssi}} PN^2P^{-1} = A \underline{\text{ssi}} N^2 = P^{-1}AP \underline{\text{ssi}} N^2 = T$$

L'équation $M^2 = A$ admet donc exactement deux solutions :

$$M_1 = PN_1P^{-1}$$
 et $M_2 = PN_2P^{-1} (= -M_1)$.

4. La matrice nulle n'étant pas solution de l'équation $M^2=A$ d'inconnue $M\in\mathcal{M}_3(\mathbb{R})$, l'ensemble E n'est pas un espace vectoriel.