Devoir Maison 19 - Eléments de Correction

Exercice 1

Soit f la fonction définie par

$$f(x) = (\operatorname{ch} x)^{\frac{1}{x}} = e^{\frac{1}{x}\ln(\operatorname{ch} x)}$$

- 1. La fonction f est définie pour tout réel x tel que $\operatorname{ch} x>0$ et $x\neq 0$. $\forall x\in\mathbb{R}, \operatorname{ch} x\geq 1>0$ donc le domaine de définition D de f est $D=\mathbb{R}^*$
- 2. (a) $\operatorname{ch} x = 1 + \frac{x^2}{2} + o(x^3)$
 - (b) $\lim_{x\to 0} \operatorname{ch} x 1 = 0$ alors en écrivant $\operatorname{ln} \operatorname{ch} x = \operatorname{ln}(1 + \operatorname{ch} x 1)$ on peut utiliser le théorème de composition de développement limité en utilisant $\operatorname{ln}(1+X) = X \frac{X^2}{2} + \frac{X^3}{3} + o(X^3)$ où on remplace X par la partie régulière du développement limité de $\operatorname{ch} x 1$:

ainsi
$$\ln(\operatorname{ch} x) = \frac{x^2}{2} + o(x^3)$$
 d'où $\frac{1}{x} \ln \operatorname{ch} x = \frac{x}{2} + o(x^2)$

il vient
$$\lim_{x\to 0} \frac{1}{x} \ln \cosh x = 0$$

on peut donc à nouveau utiliser le théorème de composition de développement limité en remplaçant X par la partie régulière du développement limité de $\frac{1}{x}$ ln chx dans celui de e^X

$$e^{X} = 1 + X + \frac{X^{2}}{2} + o(X^{2}) \text{ donc } f(x) = 1 + \frac{x}{2} + \frac{1}{2} \left(\frac{x}{2}\right)^{2} + o(x^{2})$$
Conclusion:
$$f(x) = 1 + \frac{1}{2}x + \frac{1}{8}x^{2} + o(x^{2})$$

(c) On en déduit $\lim_{x\to 0} f(x) = 1$ donc f est prolongeable par continuité en 0 par une

fonction
$$\widetilde{f}$$
 définie sur \mathbb{R} par $\widetilde{f}(x) = \begin{cases} f(x) & \text{si } x \neq 0 \\ 1 & \text{si } x = 0 \end{cases}$

On appelera ensuite encore f le prolongement ainsi obtenu.

(d) La tangente \mathcal{T}_0 à \mathcal{C} a pour équation : $y = 1 + \frac{1}{2}x$

Au voisinage de 0, $\frac{1}{8}x^2 > 0$ donc $\underline{\mathcal{C}}$ est au -dessus de \mathcal{T}_0 au voisinage de $\underline{0}$.

3. $\ln \operatorname{ch} x = \ln \frac{e^x(1+e^{-2x})}{2} = x + \ln \frac{1+e^{-2x}}{2}$ donc $\frac{1}{x} \ln \operatorname{ch} x = 1 + \frac{1}{x} \ln \frac{1+e^{-2x}}{2}$

$$\lim_{x \to +\infty} \frac{1}{x} \ln \frac{1 + e^{-2x}}{2} = 0 \text{ donc } \lim_{x \to +\infty} \frac{1}{x} \ln \ln x = 1 \text{ et } \lim_{X \to 1} e^{X} = e \text{ donc } \lim_{x \to +\infty} f(x) = e$$

$$\ln \operatorname{ch} x = \ln \frac{e^{-x}(1+e^{2x})}{2} = -x + \ln \frac{1+e^{2x}}{2} \operatorname{donc} \frac{1}{x} \ln \operatorname{ch} x = -1 + \frac{1}{x} \ln \frac{1+e^{2x}}{2}$$

$$\lim_{x \to -\infty} \frac{1}{x} \ln \frac{1 + e^{2x}}{2} = 0 \text{ donc } \lim_{x \to -\infty} \frac{1}{x} \ln \operatorname{ch} x = -1 \text{ et } \lim_{X \to -1} e^X = \frac{1}{e} \text{ donc } \lim_{x \to -\infty} f(x) = \frac{1}{e}$$

4. (a) La fonction $x \mapsto \ln \operatorname{ch} x$ est dérivable sur \mathbb{R} donc sur D en tant que logarithme d'une fonction dérivable sur \mathbb{R} à valeurs strictement positives sur \mathbb{R} .

La fonction $x \mapsto \frac{1}{x} \ln \cosh x$ est dérivable sur D en tant que produit de fonctions dérivables sur D.

A Lors f est dérivable sur D en tant qu'exponentielle d'une fonction dérivable sur D.

$$\forall x \in D, f'(x) = f(x) \frac{x \frac{\sinh x}{\cosh x} - \ln \cosh x}{x^2} = \frac{f(x)}{x^2} (x \tanh x - \ln \cosh x)$$

donc pour tout réel x appartenant à D, $\left| f'(x) = \frac{f(x)}{x^2} \varphi(x) \right|$ où φ est la fonction définie par

$$\varphi(x) = x \tanh x - \ln \operatorname{ch} x.$$

(b) φ est dérivable sur D et $\forall x \in D, \varphi'(x) = \tanh x + x(1 - \tanh^2 x) - \tanh x = x(1 - \tanh^2 x)$

or $\forall x \in D, -1 < \tanh x < 1$ donc $1 - \tanh x > 0$ ainsi $\varphi'(x)$ est du signe de x.

On en déduit que φ est strictement décroissante sur] $-\infty$; 0[et strictement croissante sur]0; $+\infty$ [

Or
$$\lim_{x\to 0} \varphi(x) = 0$$
 d'où : $\forall x \in D, \varphi(x) > 0$

(c) $\forall x \in D, \frac{f(x)}{x^2} > 0$ donc f'(x) est du signe de $\varphi(x)$ qui est strictement positif.

f est donc strictement croissante sur chacun des intervalles $]-\infty,0[\]0;+\infty[$. D'après le développement limité, la fonction f prolongée par continuité est

dérivable en 0 et $f'(0) = \frac{1}{2}$



