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Devoir Maison 13 - Eléments de Correction

Exercice 1
Corrigé ECRICOME 1996 par Pierre Veuillez

On désigne par n un entier naturel non nul, et l’on se propose d’étudier les racines de
l’équation

(En) : lnx+ x = n

A cet effet, on introduit la fonction f de la variable réelle x définie sur R×
+ par :

f(x) = lnx+ x

1.1. Existence des racines de (En)

1. f est dérivable sur ]0,+∞[ et f ′ (x) = 1
x + 1 > 0

En 0 : f (x) = ln (x) + x → −∞
En +∞ : f (x) → +∞.

f est continue et strictement croissante sur R×
+ donc bijective de R×

+ sur
]lim0 f, lim+∞ f [ = R.

Pour tout n ∈ N on a n ∈ R donc l’équation f (x) = n a une unique solution
xn ∈ R∗

+.

Et comme f (xn) = n < n+ 1 = f (xn+1) alors xn < xn+1

Conclusion : (xn)n∈N est strictement croissante.

2. On a f (1) = ln (1) + 1 = 1

Conclusion : x1 = 1

Pour x2, on procède par encadrement :

f (1.55) ≃ 1.98 ≤ 2 = f (x2) < f (1.56) donc (f strictement croissante sur R∗
+

et les termes s’y trouvent).

Conclusion : 155
100 ≤ x2 ≤ 156

100 valeur approchée 1.56

3. Pour la courbe représentative, on détermine les branches infinie et les tangentes :

On a f(x)
x = 1 + ln(x)

x → 1 et f (x)− x = ln (x) → +∞
Donc une branche parabolique de direction y = x.

tangente en 1 de pente f ′ (1) = 2

en x2 ≃ 1.5 la pente est de f ′ (x2) ≃ 1.6

et asymptote verticale en 0

1.2. Etude de la convergence de (xn)n∈N×

1. On étudie les variations de la différence :

g (x) = ln (x)− xest dérivable sur ]0,+∞[ et

g′ (x) =
1

x
− 1 =

1− x

x

qui est du signe de 1− x

x 0 1
1− x ∥ + 0 − affine
g′ (x) ∥ + 0 −
g (x) ∥ ↗ − −1 ↘ −

donc g (x) < 0 et

Conclusion : ∀x ∈ R×
+, lnx < x.

2. On compare les images :

f
(n
2

)
= ln

(n
2

)
+

n

2
<

n

2
+

n

2
= n

f (n) = ln (n) + n ≥ n car n ≥ 1

donc f
(
n
2

)
≤ f (xn) ≤ f (n) et comme f est strictement croissante sur ]0,+∞[ et

que n
2 , xn et n en sont éléments,

Conclusion : ∀n ∈ N×,
n

2
⩽ xn ⩽ n

3. Enfin, n
2 → +∞ donc par minoration

Conclusion : xn tend vers +∞ quand n tend vers +∞ ?

1.3. Comportement asymptotique de (xn)n∈N×

1. L’encadrement précédent ne donne

ln
(n
2

)
n

⩽
ln (xn)

n
⩽

ln (n)

n

avec

ln
(n
2

)
n

=
ln (n)

n
− ln (2)

n
→ 0

car ln (n) = o (n) et par encadrement ,

Conclusion :
ln(xn)

n
tend vers 0 quand n tend vers +∞.
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On réutilisae alors la relation de définition de xn : ln (xn) + xn = n

Donc xn = n− ln (xn) = n

(
1− ln (xn)

n

)
avec () → 1 et on a donc

Conclusion : xn ∼
n→+∞

n.

(on pouvait aussi en déduire la lmite de xn/n )

2. Piège :l’équivalent d’une somme n’est pas la somme des équivalents !

xn+1 − xn = n+ 1− ln (xn+1)− n+ ln (xn)

= 1 + ln

(
xn

xn+1

)
et

xn

xn+1
∼ n

n+ 1
→ 1

Conclusion : xn+1 − xn tend vers 1 quand n tend vers +∞.

3. On pose :

∀n ∈ N×, un =
n− xn

lnn
.

(a) Pour tout n > 0 (pour le ln (n) )

un − 1 =
n− xn

lnn
− 1

=
n− xn − ln (n)

lnn
avec xn = n− ln (xn)

=
n− n+ ln (xn)− ln (n)

lnn

=
ln
(xn

n

)
lnn

Conclusion : ∀n ∈ N×, un − 1 =
ln
(xn

n

)
lnn

(b) Comme xn ∼ n alors
xn

n
→ 1 et

ln
(xn

n

)
lnn

→ 0 donc

Conclusion : un tend vers 1 quand n tend vers +∞
(c) Il faut ici patouiller longtemps avant de trouver une bonne idée :

On a donc un =
n− xn

lnn
→ 1 donc n− xn ∼ ln (n) et

Conclusion : ln (xn) ∼ ln (n) ce qui n’était pas demandé.

Puis :

1− un = −
ln
(xn

n

)
lnn

et comme
xn

n
→ 1 et que ln (x) ∼ x− 1 quand x → 1 alors

ln
(xn

n

)
∼ xn

n
− 1 =

xn − n

n
=

− ln (xn)

n

donc

1− un ∼ −− ln (xn)

n ln (n)

∼ 1

n

Conclusion : 1− un ∼
n→+∞

1

n

4. Il existe donc ε tendant vers 0 telle que 1− un = 1
n

(
1 + ε

(
1
n

))
donc

un = 1− 1

n
− 1

n
ε

(
1

n

)
et

n− xn

lnn
= 1− 1

n
− 1

n
ε

(
1

n

)
et

n− xn = ln (n)− ln (n)

n
− ln (n)

n
ε

(
1

n

)
et

xn = n− ln (n) +
lnn

n
+

lnn

n
ε

(
1

n

)
Exercice 2
Partie -A-

Soit l’équation différentielle (E) : y ′ + 2x y = 1

1. (E) est une équation linéaire du premier ordre avec second membre
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2. (a) C’est une démonstration par récurrence.

•Amorce : par définition d’une solution d’une équation différentielle :

f est dérivable (donc de classe C0 sur R.)
•hérédité : Si f solution de (E) est de classe Cn, l’égalité f ′ = 1− 2 Id×f

montre que f ′ est également de classe Cn donc f est de classe C n+1 sur R.
Ainsi : ∀ n ∈ N , f de classe C n d’où f est de classe C∞ sur R

(b) On utilise (E) avec x = 0, ce qui donne f ′(0) + 2× 0× f(0) = 1 d’où

f ′(0) = 1

3. L’application identique (Id) et f sont de classe C∞ sur R. On peut utiliser la for-
mule de Leibniz à tout ordre. En dérivant l’égalité (E) à l’ordre k + 1, il vient

f (k+2) + 2

k+1∑
i=0

(
k + 1

i

)
Id(i) f (k+1−i) = 1 (k+1)

Comme les dérivées Id : x 7→ x sont nulles à partir de l’ordre 2, il reste

f (k+2) + 2
(
Id f (k+1) + (k + 1) f (k)

)
= 0

donc ∀ k ∈ N , ∀x ∈ R , f (k+2)(x) = −2x f (k+1)(x)− 2 (k + 1) f (k)(x)

4. (a) f est de classe C∞. On peut appliquer la formule de Taylor-Young à tout ordre

ce qui prouve que ∀ p ∈ N , f admet un DLp(0)

(b) Dans le développement limité f(x) =
∑n

k=0 ak x
k + o(xn) nous avons

ak = f (k)(0)
k ! .

La question ?? appliquée avec x = 0 donne f (k+2)(0) = − 2 (k + 1) f (k)(0)

qui se traduit en ak+2 (k + 2)! = −2 ak (k + 1)! soit ∀ k ∈ N , ak+2 = − 2
k+2 ak

Comme a1 = f (1)(0) = 1 , on en déduit a3 = −2
3 , a5 = (−2)×(−2)

5×3 , et, par

une récurrence évidente a2 k+1 = (−2)k

3·5···(2 k+1) . En écrivant

3 · 5 · · · (2 k + 1) = (2 k+1) !
2·4···(2 k) =

(2 k+1) !
2 k k !

il vient a2 k+1 = ak = (−4)k k !
(2 k+1) !

(c) De même a0 = f(0) , a2 = (−2)
2 f(0) , a4 = (−2) 2

2×4 f(0) , et par récurrence

a2 k = (−2)k

2·4···(2 k) f(0) qui s’écrit a2 k = (−1) k

k ! f(0)

Partie -B-

5. L’application : t 7→ et
2

est continue sur R donc Φ : x 7→
∫ x

0
et

2

dt en est une
primitive. Elle est donc de classe C1 sur R (et même de classe C∞ comme l’ex-
ponentielle).

Ainsi : D : x 7→ e−x2

Φ(x) est le produit de deux fonctions de classe C1 (en

fait de classe C∞) donc D est de classe C1 sur R,

La justification ci-dessus montre que D se dérive en D ′ telle que

D ′(x) = (−2x) e−x2

Φ(x)︸ ︷︷ ︸
= D(x)

+e−x2

ex
2︸︷︷︸

Φ ′(x)

qui montre queD vérifie : ∀ x ∈ R , D ′(x) = −2xD(x) + 1 D est solution de (E)

6. La fonction x 7→ ex
2

est paire donc
∫ x

0
et

2

dt = −
∫ −x

0
et

2

dt .

De plus : e−x2

= e−(−x)2 . Nous en déduisons que D est impaire

Il est évident que D(x) est du signe
∫ x

0
e t 2

dt. Comme e t 2

> 0, l’intégrale

est positive si et seulement si 0 < x D(x) est du signe de x

7. Comme t 7→ et
2

est croissante sur R+, nous avons pour tout x positif

0 ⩽ t ⩽ x ⇒ e0
2

⩽ et
2

⩽ ex
2

⇒
∫ x

0

dt︸ ︷︷ ︸
= x

⩽
∫ x

0

et
2

dt ⩽
∫ x

0

ex
2

dt︸ ︷︷ ︸
= x ex2

En divisant par ex
2

> 0 il vient x ⩾ 0 ⇒ x e−x2

⩽ D(x) ⩽ x

Pour x négatif, nous avons −x ⩾ 0 donc (−x) e−(−x)2 ⩽ D(−x) ⩽ −x .

D est impaire. En changeant de signe il vient :

x ⩽ 0 ⇒ x ⩽ D(x) ⩽ x e−x2

8. (a) Méthode 1 (vérification de la formule) : il suffit de dériver les deux membres
de l’égalité. Les dérivées sont égales donc les deux membres sont égaux à une
constante additive près. Comme l’égalité est évidente pour x = 1, la constante
est nulle d’où le résultat.

Méthode 2 (établir la formule) : on intégre 2 fois par parties
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∫ x

1

1

2 t︸︷︷︸
u(t)

2 t et
2︸ ︷︷ ︸

v ′(t)

dt =
[

1
2 t e

t 2
] x

1
+
∫ x

1
1

2 t 2 e
t 2

dt (u et v de classe

C1)

et
∫ x

1

1

4 t 3︸︷︷︸
u(t)

2 t et
2︸ ︷︷ ︸

v ′(t)

dt =
[

1
4 t 3 e

t 2
] x

1
+

∫ x

1
3

4 t 4 e
t 2

dt (u et v de classe

C1)

donne bien
∫ x

1
et

2

= e x2

2 x + e x2

4 x 3 − 3 e
4 + 3

4

∫ x

1
e t2

t 4 dt

(b) Soit h(x) = e x2

x2 . Sur [ 1 , +∞ [ : h ′(x) = 2 (x 2−1) e x2

x 3 ⩾ 0

montre que h est croissante sur [ 1 , +∞ [

Nous en déduisons

1 ⩽ t ⩽ x ⇒ e 12

1 2︸︷︷︸
0 ⩽

⩽
e t 2

t 2
⩽

e x 2

x 2︸︷︷︸
= h(x)

⇒ 0 ⩽
e t 2

t 4
⩽ h(x)

1

t 2

qu’on intègre de 1 à x ( 1 ⩽ x ) 1 ⩽ x ⇒ 0 ⩽
∫ x

1
e t 2

t 4 dt ⩽ h(x)
∫ x

1
1
t 2 dt

Comme h(x)
∫ x

1
1
t 2 dt =

e x 2

x
1
x

(
1− 1

x

)
, en divisant par e x 2

2 x > 0 , on ob-
tient :

x > 1 ⇒ 0 ⩽
1

e x2

2 x

∫ x

1

e t2

t4
dt ⩽

1

x

(
1− 1

x

) x→∞−→ 0

Par pincement, ceci prouve que en +∞ ,
∫ x

1
e t 2

t 4 = o
(

e x2

2 x

)
(c) La question ?? donne

∫ x

1
et

2

= e x2

2 x +
e x2

4x 3
− 3 e

4
+

3

4

∫ x

1

e t2

t 4
dt︸ ︷︷ ︸

négligeable devant e x2

2 x

.

puisque, au voisinage de +∞,

◁ e x2

4 x 3 = o
(

e x2

2 x

)
(le quotient 1

2 x 2 tend vers 0)

◁ 3 e
4 = o

(
e x2

2 x

)
(le quotient 2 e x2

3 e x tend vers 0)

◁
∫ x

1
e t 2

t 4 = o
(

e x2

2 x

)
(question précédente)

ce qui permet de conclure en +∞ :
∫ x

1
e t 2

dt ∼ e x2

2 x

Enfin D(x) = e−x 2

( ∫ 1

0

e t 2

dt︸ ︷︷ ︸
= K>0

+
∫ x

1
e t 2

dt

)
= K e−x 2

+ e−x 2 ∫ x

1
e t 2

dt

Or e−x 2 ∫ x

1
e t 2

dt ∼ e−x 2 e x 2

2 x = 1
2 x et limx→+∞

K e−x 2

1
2 x

= 0

montre que K e−x 2

est négligeable devant e−x 2 ∫ x

1
e t 2

dt . Ainsi

en +∞ : D(x) ∼ 1
2 x

9. (a) D étant impaire du signe de x, si D admet un maximum, celui-ci ne peut
qu’être sur [0 , ∞ [. Montrons plus précisément que ce maximum est atteint
en b ∈]0, 1] :

•pour x assez grand nous avons D(x) ⩽ D(1)

l’équivalent montre que limx→+∞ D(x) = 0 donc, avec ε = D(1) > 0 nous
avons

∃ A ∈ R∗
+ , ∀ x , x ⩾ A ⇒ D(x) < D(1)

•D atteint un maximum M sur [ 0 , A ]

D est continue sur [ 0 , A ] donc D
(
[ 0 , A ]

)
est un segment [m,M ],

et M ∈ D([ 0 , A ]) ⇒ ∃ b ∈ [ 0 , A ] D(b) = M

•M = D(b) est le maximum absolu de D sur R
▷D(1) ⩽ M puisque 1 ∈ [ 0 , A ]

En effet, dans le cas contraire nous aurions

1 ⩾ A ⇒ D(1) < D(1)

▷M est maximum absolu sur R
Pour tout réel x, trois cas sont possibles :

x < 0 alors D(x) ⩽ 0 ⩽ M

0 ⩽ x ⩽ A alors D(x) ∈ D([ 0 , A ]) ⇒ D(x) ⩽ M

x > A alors D(x) < D(1) ⩽ M

4
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1 Ab

M

De plus, D(0) = 0 ̸= M donc b > 0 D atteint son maximum absolu en b ∈ R∗
+

(b) La fonction D continue dérivable atteint son maximum en b qui n’est pas une
borne de l’intervalle donc D ′(b) = 0 .

Comme D est solution de l’équation différentielle (E) nous en déduisons

D ′(b)︸ ︷︷ ︸
= 0

+2 bD(b) = 1 d’où M = D(b) = 1
2 b

(c) Si M est atteint en deux points b et b ′ , nous avons alors M = D(b) = D(b ′)

d’où 1
2 b = 1

2 b ′ ⇒ b = b ′ le maximum est atteint en un point b unique

Partie -C-

10. L’équation (E) est linéaire :

▷Les solutions de l’équation homogène associée : y′ + 2x y = 0

sont x 7→ K e
∫
−2 x dx = K e−x2

▷D est une solution particulière de (E)

Les solutions de (E) sont donc x 7→ K e−x 2

+D(x) K ∈ R

11. D étant impaire, une solution ci-dessus est impaire si et seulement si elle vérifie

∀ x ∈ R K e−x 2

+D(x) = −K e−(−x) 2

− D(−x)︸ ︷︷ ︸
=−D(x)

∀ x ∈ R K e−x 2

= −K e−x 2

⇔ K = 0

D est la seule solution impaire de (E)
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