Devoir Maison 02 - Eléments de Correction

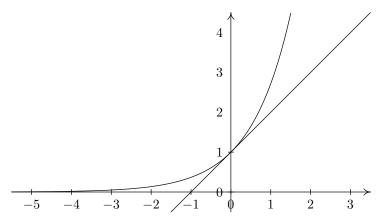
Exercice 1

$$f_n(x) = \frac{e^x - 1}{x} + n \ln x,$$

Partie A: Etude du cas particulier n=0

 f_0 est donc la fonction définie sur l'intervalle]0; $+\infty[$ par $f_0(x)=\frac{\mathrm{e}^x-1}{x}.$

1.



- 2. Résolution graphique d'une inéquation :
 - (a) Avec $f(x) = e^x$, f(0) = 1, $f'(x) = e^x$ et f'(0) = 1.

Une équation de la tangente au point d'abscisse 0 est :

$$y - f(0) = f'(0)(x - 0)$$
, soit $y - 1 = x$ ou $y = x + 1$.

On voit sur la figure que quel que soit le réel u, la courbe est au dessus de la tangente soit :

$$e^u \geqslant u + 1$$
.

(b) En posant pour tout réel $u, \quad x = -u,$ l'inégalité précédente s'écrit :

$$e^{-x} \geqslant -x + 1 \Leftrightarrow e^{-x} + x - 1 \geqslant 0.$$

En multipliant chaque membre de l'inégalité précédente par e^x , on obtient : $1 + (x - 1)e^x \ge 0$.

- 3. Limites:
 - (a) On a $f_0(x) = \frac{e^x}{x} \frac{1}{x}$.

Or $\lim_{x\to+\infty}\frac{1}{x}=0$ et $\lim_{x\to+\infty}\frac{\mathrm{e}^x}{x}=+\infty$, donc par somme de limites

$$\lim_{x \to +\infty} f_0(x) = +\infty.$$

(b) Avec la fonction $f(x) = e^x$, on a par définition $f'(0) = \lim_{x \to 0} \frac{e^x - e^0}{x - 0} = \lim_{x \to 0} \frac{e^x - 1}{x - 0}$

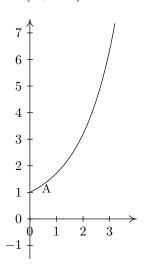
 $\lim_{x \to 0} \frac{e^x - 1}{x} = f'(0) = e^0 = 1. \text{ Donc } \lim_{x \to 0} \frac{e^x - 1}{x} = 1.$

- 4. Sens de variations:
 - (a) La fonction f_0 quotients de fonctions dérivables sur]0; $+\infty[$, le dénominateur étant non nul est dérivable et sur cet intervalle :

 $f_0'(x) = \frac{xe^x - (e^x - 1)}{x^2} = \frac{e^x(x - 1) + 1}{x^2}.$

(b) On a vu à la fin de la question précédente que $1 + (x - 1)e^x \ge 0$, donc $f'_0(x) \ge 0$ sur $[0; +\infty[$. La fonction f_0 est croissante de 1 à plus l'infini.

5.



Partie B : Etude de la famille de fonctions f_n pour $n\geqslant 1$

1. La fonction $f_n(x) = \frac{e^x - 1}{x} + n \ln x$ somme de quotient de fonctions dérivables le dénominateur ne s'annulant pas sur]0; $+\infty[$ est dérivable et sur cet intervalle :

 $f'_n(x) = \frac{xe^x - (e^x - 1)}{x^2} + \frac{n}{x} = \frac{e^x(x - 1) + 1 + nx}{x^2}.$

Or on a vu que $e^x(x-1)+1 \ge 0$, donc comme nx > 0, $e^x(x-1)+1+nx > 0$: donc $f'_n(x) > 0$: les fonctions f_n sont croissantes sur $[0; +\infty[$.

2. • On a vu que $\lim_{x\to +\infty}\frac{\mathrm{e}^x-1}{x}=+\infty$ et $\lim_{x\to +\infty}n\ln x=+\infty$, d'où par somme de limites :

$$\lim_{x \to +\infty} f_n(x) = +\infty.$$

• On a vu que $\lim_{x\to 0} \frac{\mathrm{e}^x-1}{x} = 1$ et on a $\lim_{x\to 0} n \ln x = -\infty$, d'où par somme de limites : $\lim_{x\to 0} f_n(x) = -\infty$.

Le dernier résultat montre que géométriquement l'axe des ordonnées est asymptote verticale à C_n au voisinage de zéro.

3. Soit
$$d_n(x) = f_{n+1}(x) - f_n(x) = \frac{e^x - 1}{x} + (n+1)\ln x - \left(\frac{e^x - 1}{x} + n\ln x\right) = \ln x$$
.

Or on sait que la fonction ln est négative entre 0 et 1, s'annule en 1 et est positive sur $[1 ; +\infty[$. Donc :

- Sur]0; $1[C_{n+1}]$ est au dessous de C_n ;
- Sur |1|; $+\infty[C_{n+1}]$ est au dessus de C_n ;
- Toutes les courbes C_n contiennent le point de coordonnées (1 ; e-1).
- 4. On a vu à la question précédente que $d_n(x) = n \ln x$, donc $d_n(1) = 0$: toutes les courbes C_n contiennent donc le point B(1; e 1).

5. (a) On a
$$f_1(x) = \frac{e^x - 1}{x} + \ln x$$
.

On a vu que les fonctions f_n sont strictement croissantes de moins l'infini à plus l'infini; comme elles sont continues car dérivables sur]0; $+\infty[$, il existe donc un réel unique $\alpha_1 \in]0$; $+\infty[$ tel que $f_1(\alpha_1) = 0$.

On a
$$f_1(1) = e - 1 > 0$$
, donc $\alpha_1 \in]0$; 1[;

$$f(0,2) = \frac{e^{0,2} - 1}{0,2} + \ln 0, 2 \approx -0,502 \text{ et}$$

$$f(0,9) = \frac{e^{0,9} - 1}{0.9} + \ln 0, 9 \approx 7, 2, \text{ donc } \alpha_1 \in]0,2 ; 0,9[.$$

(b) On a vu à la question 3 que sur [0; 1[, C_{n+1} est au dessous de C_n , donc en particulier que C_2 est au dessous de C_1 , C_3 est au dessous de C_2 , ... et donc que pour n > 1, C_n est au dessous de C_1 , donc en particulier que pour tout n > 1, $f_n(\alpha_1) < f_1(\alpha_1)$.

Or
$$f_1(\alpha_1) = 0$$
, donc $f_n(\alpha_1) < 0$ pour tout $n > 1$.

- (c) Quel que soit n > 1, on vient de voir que $f_n(\alpha_1) < 0$ et on sait que $f_n(1) > 0$; la fonction f_n étant continue car dérivable s'annule donc pour une unique valeur α_n de $|\alpha_1|$; 1[.
- 6. (a) On a vu dans la partie A que la fonction f_0 est strictement croissante en particulier sur l'intervalle [0; 1[, donc

$$0 < x < 1 \Rightarrow 1 < \frac{e^x - 1}{x} < e - 1.$$

(b) Par définition α_n annule la fonction f_n , soit :

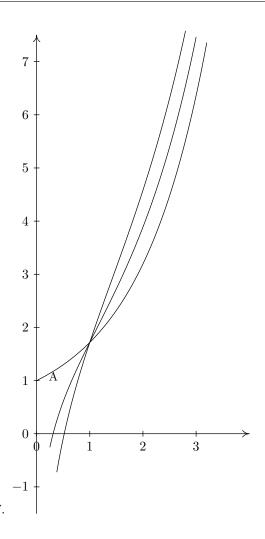
$$\frac{\mathrm{e}_n^{\alpha} - 1}{\alpha_n} + n \ln \alpha_n = 0.$$

On a vu au 6. a que si $x \in]0$; 1], alors $\frac{e^x - 1}{x} < e - 1$ donc en particulier pour α_n , $\frac{e^{\alpha_n} - 1}{\alpha_n} < e - 1 \Rightarrow \frac{e^{\alpha_n} - 1}{\alpha_n} + n \ln \alpha_n < e - 1 + n \ln \alpha_n$ ou encore $0 < e - 1 + n \ln \alpha_n \Leftrightarrow n \ln \alpha_n > 1 - e \Leftrightarrow \ln \alpha_n > \frac{1 - e}{n}$.

La fonction exponentielle étant croissante, on a :

$$\ln \alpha_n > \frac{1-e}{n} \Rightarrow e^{\ln \alpha_n} > e^{\frac{1-e}{n}}$$
 ou encore $\alpha_n > e^{\frac{1-e}{n}}$.

(c) On a donc $e^{\frac{1-e}{n}} < \alpha_n < 1$; or $\lim_{n \to +\infty} \frac{1-e}{n} = 0$, donc $\lim_{n \to +\infty} e^{\frac{1-e}{n}} = 1$, donc d'après le théorème des « gendarmes », $\lim_{n \to +\infty} \alpha_n = 1$.



Partie C: Etude d'une suite d'intégrales

$$I_n = \int_1^{\frac{3}{2}} f_n(x) \, \mathrm{d}x.$$

- 1. On a vu que sur $[1 ; +\infty[$, $f_n(x) \ge 0$, donc I_n est l'aire (en unité d'aire) de la surface limitée par l'axe des abscisses, la courbe C_n et les droites verticales d'équation x = 1 et $x = \frac{3}{2}$.
- 2. $I_{n+1} I_n = \int_1^{\frac{3}{2}} f_{n+1}(x) dx \int_1^{\frac{3}{2}} f_n(x) dx$ et par linéarité de l'intégrale :

$$I_{n+1} - I_n = \int_1^{\frac{3}{2}} \left[f_{n+1}(x) - f_n(x) \right] dx.$$

Or on a vu que pour $x\geqslant 1$, $f_{n+1}(x)\geqslant f_n(x)$, d'où $f_{n+1}(x)-f_n(x)\geqslant 0$, donc $I_{n+1}-I_n$ est l'intégrale d'une fonction positive; sur l'intervalle $\left[1\;;\;\frac{3}{2}\right]$, cette intégrale est positive et par conséquent la suite (I_n) est croissante.

3. D'après la question précédente l'aire comprise entre les courbes C_{n+1} et C_n et les droites d'équation x=1 et $x=\frac{3}{2}$ est, en unité d'aire, l'intégrale

$$\int_{1}^{\frac{3}{2}} \left[f_{n+1}(x) - f_{n}(x) \right] dx = \int_{1}^{\frac{3}{2}} \ln x \, dx.$$

L'unité d'aire est égale à $2\times 2=4$ cm², donc l'aire cherchée est égale à $4\int_1^{\frac{3}{2}} \ln x\,\mathrm{d}x$ aire indépendante de n et donc constante.

Rem. On trouve par une intégration par parties qu'une primitive de la fonction $x \longmapsto \ln x$ est la fonction $x \longmapsto x \ln x - x$.

L'aire cherchée est donc :

$$\int_{1}^{\frac{3}{2}} 4 \ln x \, dx = 4 \left[x \ln x - x \right]_{1}^{\frac{3}{2}} = 4 \left[\frac{3}{2} \ln \frac{3}{2} - \frac{3}{2} - (1 \ln 1 - 1) \right] = 4 \left[\frac{3}{2} \ln \frac{3}{2} - \frac{1}{2} \right] =$$

 $6 \ln \frac{3}{2} - 2 \approx 0,433 \text{ cm}^2.$

On a obombré cette surface dans la figure au dessus, aire entre \mathcal{C}_1 et \mathcal{C}_2 .